云南大学信息学院;
为了有效解决水下图像亮度、对比度过低和颜色混乱等问题,提出一种改进的多尺度密集残差网络的水下图像增强方法。对原始图像进行多尺度特征提取,更好地保留了图像细节,通过改进的密集残差网络对水下图像进行增强处理,提升图像亮度和对比度,校正图像颜色,在每个密集残差网络间添加了SK注意力机制,可以选择性地捕捉输入图像的关键信息并进行处理,将增强后的水下图像进行多尺度融合。通过Type和EUVP两个水下图像数据集对所提出方法进行验证,基于物理模型和数据驱动的6种方法进行了主观效果和客观指标间的比较。在主观效果的定性分析中发现,所提出的方法在提高亮度和对比度方面取得了很大的进步。在客观图像评价指标的定量分析中,峰值信噪比(Peak Signal to Noise Ratio, PSNR)、结构相似性(Structural Similarity, SSIM)、信噪比(Signal to Noise Ratio, SNR)、均方误差(Mean Square Error, MSE)、视觉信息保真度(Visual Information Fidelity, VIF)、信息保真度准则(Information Fidelity Criterion, IFC)、噪声质量评价(Noise Quality Measure, NQM)、亮度顺序误差(Lightness Order Error, LOE)和自然图像质量评价(Natural Image Quality Evaluator, NIQE)指标较现有的水下图像增强算法分别提高了1.5%,1%,1.2%,1.2%,1.3%,1.2%,1.7%,3.0%和1.1%。提出的改进多尺度密集残差网络不仅可以增强图像的亮度、对比度以及校正图像的颜色,而且可以应用于更广泛的水域场景。
532 | 6 | 10 |
下载次数 | 被引频次 | 阅读次数 |
[1] SATHYA R,BHARATHI M.Survey on Underwater Image Enhancement[J].Digital Image Processing,2015,7(3):93-95.
[2] YANG M,HU J T,LI C Y,et al.An In-depth Survey of Underwater Image Enhancement and Restoration[J].IEEE Access,2019(7):123638-123657.
[3] GUO J C,LI C Y,GUO C,et al.Research Progress of Underwater Image Enhancement and Restoration Methods[J].Journal of Image and Graphics,2017,22(3):273-287.
[4] LI J,ZHANG X D,LI S F,et al.Underwater Color Image Enhancement Based on Two-scale Image Decomposition[J].Journal of Image and Graphics,2021,26(4):787-795.
[5] LIU C,MENG W.Removal of Water Scattering[C]//International Conference on Computer Engineering & Technology.Chengdu:IEEE,2010:35-39.
[6] HE K,SUN J,TANG X O.Single Image Haze Removal Using Dark Channel Prior[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2011,33(12):2341-2353.
[7] PENG Y T,COSMAN P C.Underwater Image Restoration Based on Image Blurriness and Light Absorption[J].IEEE Trans.on Image Process,2017,26(4):1579-1594.
[8] HUANG D,WANG Y,WEI S,et al.Shallow-water Image Enhancement Using Relative Global Histogram Stretching Based on Adaptive Parameter Acquisition[C]//International Conference on Multimedia Modeling.Munich:Springer,2018:453-465.
[9] SONG W,WANG Y,HUANG D,et al.A Rapid Scene Depth Estimation Model Based on Underwater Light Attenuation prior for Underwater Image Restoration[J].Advances in Multimedia Information Processing,2018,11164:678-688.
[10] SUN Z,LI F,YANG Y.Underwater Image Enhancement Algorithm Based on Dark Channel Prior and Underwater Imaging Model[J].MATEC Web of Conferences,2021,336:2261-2265.
[11] NAVIN S,JEBASEELI T J.A Survey on Enhancing Underwater Images and Videos by Fusion Techniques[J].International Journal of Mechanical Engineering and Information Technology (IJMEIT),2014,2(2):2348-2356.
[12] GHANI A,ISA N.Underwater Image Quality Enhancement Through Integrated Color Model with Rayleigh Distribution[J].Applied Soft Computing,2015,27:219-230.
[13] LI C,GUO C,REN W,et al.An Underwater Image Enhancement Benchmark Dataset and Beyond[J].IEEE Transactions on Image Processing,2020,29:4376-4389.
[14] LI C,ANWAR S.Underwater Scene Prior Inspired Deep Underwater Image and Video Enhancement[J].Pattern Recognition,2019,98:2105-2111.
[15] LI H,LI J,WANG W.A Fusion Adversarial Underwater Image Enhancement Network with a Public Test Dataset[J].IEEE Journal of Oceanic Engineering,2019,99:1-9.
[16] ISLAM M J,XIA Y,SATTAR J.Fast Underwater Image Enhancement for Improved Visual Perception[J].IEEE Robotics and Automation Letters,2020,5(2):3227-3234.
[17] FABBRI C,JAHIDUL I M,SATTAR J.Enhancing Underwater Imagery Using Generative Adversarial Networks[C]∥2018 IEEE International Conference on Robotics and Automation (ICRA).Brisbane:IEEE,2018:7159-7165.
[18] LI Y,CHEN R.UDA-Net:Densely Attention Network for Underwater Image Enhancement[J].IET Image Processing,2021,15(3):774-785.
[19] RONNEBERGER O,FISCHER P,BROX T.U-Net:Convolutional Networks for Biomedical Image Segmentation[C]∥18th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI).Munich:Springer,2015:234-241.
[20] SUN Y M,ZANG Y,LIU S D,et al.Image Super-Resolution Using Supervised Multi-scale Feature Extraction Network[J].Multimedia Tools and Applications,2020,80(2):1995-2008.
[21] ZHANG Z,TANG Z M,WANG Y,et al.Dense Residual Network:Enhancing Global Dense Feature Flow for Character Recognition[J].Neural networks,2021,139:77-85.
[22] LI X,WANG W,HU X,et al.Selective Kernel Networks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach:IEEE,2019:510-519.
[23] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet Classification with Deep Convolutional Neural Networks[J].Advances in Neural Information Processing Systems,2012,25(2):1097-1105.
[24] HUYNH T Q,GHANBARI M.Scope of Validity of PSNR in Image/Video Quality Assessment[J].Electronics Letters,2008,44(13):800-801.
[25] WANG Z,BOVIK A C,SHEIKH H R.Image Quality Assessment:From Error Visibility to Structural Similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612.
[26] SHEIKH H R,BOVIK A C.Image Information and Visual Quality[J].IEEE Transactions on Image Processing,2006,15(2):430-444.
[27] SHEIKHH H R,BOVIK A C,VECIANA de G.An Information Fidelity Criterion for Image Quality Assessment Using Natural Scene Statistics[J].IEEE Transactions on Image Processing,2006,14(12):2117-2128.
[28] MITTAL A,SOUNDARARAIAN R,BOVIK A C.Making a “Completely Blind” Image Quality Analyzer[J].IEEE Signal Processing Letters,2013,20(3):209-212.
[29] YING Z,LI G,GAO W.A Bio-inspired Multi-exposure Fusion Framework for Low-light Image Enhancement[J].arXiv preprint arXiv:1711.00591,2017.
基本信息:
DOI:
中图分类号:TP391.41;TP183
引用信息:
[1]卫依雪,周冬明,王长城等.采用多尺度密集残差网络的水下图像增强[J].无线电工程,2021,51(09):870-878.
基金信息:
国家自然科学基金资助项目(62066047,61365001,61463052)~~