498 | 7 | 17 |
下载次数 | 被引频次 | 阅读次数 |
阵元位置误差会使阵列流型产生较大的偏差或扰动,导致基于嵌套阵列的波达方向(Direction of Arrival, DOA)估计方法性能严重下降。针对上述问题,提出了一种基于阵列流型分离的最小原子范数(Array Manifold Separated Atomic Norm Minimization, AMS-ANM)DOA估计方法。建立阵元位置误差下嵌套阵列的虚拟域接收信号模型。利用AMS-ANM方法分离阵列流型中的位置信息和角度信息,通过求解原子范数最小化问题实现欠定条件下的高精度DOA估计。仿真结果表明,所提方法能够避免阵元位置误差对角度估计性能的影响,相比于L1-SVD和矩阵重构方法,在低信噪比和小快拍情况下可以有效提高嵌套阵列的DOA估计精度和空间分辨率。
Abstract:The element position errors cause a large deviation or disturbance of the array manifold matrix, resulting in a serious reduction of the Direction of Arrival(DOA) estimation performance based on nested array. Aiming at this problem, a DOA estimation method is proposed based on Array Manifold Separated Atomic Norm Minimization(AMS-ANM). First, the virtual domain received signal model of the nested array is built under element position errors. Then, AMS-ANM separates the position and angle information in the array manifold matrix, and the high-precision DOA estimation under underdetermined conditions is achieved by solving the atomic norm minimization problem. The simulation results show that the proposed method can avoid effects of element position errors on angle estimation performance. Compared with L1-SVD and matrix reconstruction method, the proposed method can effectively improve the DOA estimation accuracy and spatial resolution with low SNR and small snapshot number.
[1] BLASONE G P,COLONE F,LOMBARDO P,et al.Dual Cancelled Channel STAP for Target Detection and DOA Estimation in Passive Radar [J].Sensors,2021,21(13):4569.
[2] 张宇乐,胡国平,周豪,等.高自由度低互耦的广义二阶嵌套MIMO雷达DOA估计[J].系统工程与电子技术,2021,43(10):2819-2827.
[3] FAYAD Y,WANG C Y,CAO Q S.Temporal-Spatial Subspaces Modern Combination Method for 2D-DOA Estimation in MIMO Radar [J].Journal of Systems Engineering and Electronics,2017,28(4):697-702.
[4] ZHENG Z,YANG T,JIANG D,et al.Robust and Efficient Adaptive Beamforming Using Nested Subarray Principles [J].IEEE Access,2020,8:4076-4085.
[5] PAL P,VAIDYANATHAN P P.Nested Arrays:A Novel Approach to Array Processing with Enhanced Degrees of Freedom [J].IEEE Transactions on Signal Processing,2010,58(8):4167-4181.
[6] FERREOL A,LARZABAL P,VIBERG M.Statistical Analysis of the MUSIC Algorithm in the Presence of Modeling Errors,Taking into Account the Resolution Probability[J].IEEE Transactions on Signal Processing,2010,58(8):4156-4166.
[7] WANG M Z,NEHORAI A.Coarrays,Music,and the Cramér-Rao Bound [J].IEEE Transactions on Signal Processing,2016,65(4):933-946.
[8] WANG M Z,ZHANG Z,NEHORAI A.Performance Analysis of Coarray-based Music in the Presence of Sensor Location Errors[J].IEEE Transactions on Signal Processing,2018,66(12):3074-3085.
[9] 杨洁,刘聪锋.阵元位置误差校正Toeplitz预处理算法[J].西安电子科技大学学报,2011,38(2):93-98.
[10] 李存勖,陈伯孝.基于空域稀疏性的方位依赖阵列误差校正算法[J].电子与信息学报,2017,39(9):2219-2224.
[11] 王燕,邹男,梁国龙.强多途环境下水听器阵列位置近场有源校正方法[J].物理学报,2015,64(2):287-296.
[12] NG B C,NEHORAI A.Active Array Sensor Localization [J].Signal Processing,1995,44(3):309-327.
[13] LIU S Y,ZHANG Z,GUO Y.2-D DOA Estimation with Imperfect L-shaped Array Using Active Calibration [J].IEEE Communications Letters,2020,25(4):1178-1182.
[14] DONOHO D L.Compressed Sensing [J].IEEE Transactions on Information Theory,2006,52(4):1289-1306.
[15] LIU Z M,HUANG Z T,ZHOU Y Y.Direction-of-Arrival Estimation of Wideband Signals via Covariance Matrix Sparse Representation [J].IEEE Transactions on Signal Processing,2011,59(9):4256-4270.
[16] ZUO M,XIE S G,ZHANG X,et al.DOA Estimation Based on Weighted l1-norm Sparse Representation for Low SNR Scenarios [J].Sensors,2021,21:4614.
[17] 梁国龙,邱龙皓,邹男.基于稀疏信号重构的阵元位置误差校正方法[J].声学学报,2017,42(6):677-684.
[18] 李兴花,郭沐然,刘鲁涛.基于矩阵重构的DOA阵元位置误差校正方法[J].航空兵器,2022,29(1):79-83.
[19] WU X,ZHU W P,YAN J.A Toeplitz Covariance Matrix Reconstruction Approach for Direction-of-Arrival Estimation [J].IEEE Transactions on Vehicular Technology,2017,66(9):8223-8237.
[20] RAO B D,HARI K V S.Performance Analysis of Root-Music[J].IEEE Trans.ASSP,1989,37(12):1939-1949.
基本信息:
DOI:
中图分类号:TN911.7
引用信息:
[1]贺顺,贺小艳,杨志伟等.阵元位置误差下的嵌套阵列DOA估计方法[J].无线电工程,2023,53(03):657-662.
基金信息:
国家自然科学基金(62071481,62071476)~~