359 | 0 | 47 |
下载次数 | 被引频次 | 阅读次数 |
从遥感影像中提取建筑物是计算机视觉领域的一项基本任务。近年来,基于深度学习的方法已成为遥感影像中自动提取建筑物的主流方法。由于建筑物结构复杂、尺度多样等特点,从遥感影像中准确高效地提取建筑物仍然是一个挑战。针对建筑物尺度多样导致在提取过程中无法同时兼顾小型和大型建筑物的问题,提出一种基于多尺度指导的遥感影像建筑物提取网络。通过4条路径分别提取小尺度、大尺度以及其他尺度特征,通过基于交互的尺度指导模块和可选择核(Selective Kernel, SK)卷积模块分别对特征进行指导和优化特征,融合不同路径提取的特征预测建筑物信息。分别在WHU数据集和inria数据集上评估提出网络的有效性,对比实验结果表明,所提出的网络在WHU数据集上的交并比(Intersection over Union, IoU)较网络SegNet、ENet、MMB-Net、Refine-UNet、MAP-Net分别提高2.37%、1.48%、1.05%、0.83%、0.59%,在inria数据集上IoU较其他网络分别提高3.65%、4.93%、2.42%、1.82%、1.21%。结果显示,所提出的网络是一种有效、提取结果完整性更高、鲁棒性更强的目标提取网络。
Abstract:Extracting buildings from remote sensing images is a fundamental task in the field of computer vision. In recent years, deep learning based methods have become the mainstream method for automatically extracting buildings from remote sensing images. Due to the complex structure and diverse scale of buildings, accurately and efficiently extracting buildings from remote sensing images remains a challenge. A remote sensing image building extraction network based on multi-scale guidance is proposed to address the issue of the inability to simultaneously consider small and large buildings during the extraction process due to the diversity of building scales. This network extracts small-scale, large-scale and other scale features through four paths, and the features are then guided and optimzed by an interaction-based scale guidance module and a Selective Kernel(SK) convolution module, respectively. Finally, the features extracted from different paths are fused to predict building information. The effectiveness of the proposed method is evaluated on the WHU dataset and the inria dataset respectively. Comparative experimental results show that the Intersection over Union(IoU) of the proposed method on the WHU dataset is 2.37%, 1.48%, 1.05%, 0.83% and 0.59% higher than SegNet, ENet, MMB-Net, Refine-Net and MAP-Net respectively. In the inria dataset, the IoU is 3.65%, 4.93%, 2.42%, 1.82% and 1.21% higher than other networks respectively. The results show that the proposed method is an effective, more complete, and robust object extraction method.
[1] COTE M,SAEEDI P.Automatic Rooftop Extraction in Nadir Aerial Imagery of Suburban Regions Using Corners and Variational Level Set Evolution[J].IEEE Transactions on Geoscience and Remote Sensing,2013,51(1):313-328.
[2] LI E,FEMIANI J,XU S B,et al.Robust Rooftop Extraction from Visible Band Images Using Higher Order CRF[J].IEEE Transactions on Geoscience and Remote Sensing,2015,53(8):4483-4495.
[3] ZHONG S,HUANG J,XIE W.A New Method of Building Detection from a Single Aerial Photograph[C]//2008 9th International Conference on Signal Processing.Beijing:IEEE,2008:1219-1222.
[4] 李治,隋正伟,傅俏燕,等.基于形态学序列和多源先验信息的城市建筑物高分遥感提取[J].遥感学报,2023,27(4):998-1008.
[5] HE K M,ZHANG X Y,REN S Q,et al.Deep Residual Learning for Image Recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:770-778.
[6] KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNet Classification with Deep Convolutional Neural Networks[J].Communications of the ACM,2017,60(6):84-90.
[7] SZEGEDY C,LIU W,JIA Y Q,et al.Going Deeper with Convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE,2015:1-9.
[8] CHEN L C,PAPANDREOU G,SCHROFF F,et al.Rethinking Atrous Convolution for Semantic Image Segmentation[EB/OL].(2017-12-05) [2023-06-11].https://arxiv.org/abs/1706.05587.
[9] LONG J,SHELHAMER E,DARRELL T.Fully Convolutional Networks for Semantic Segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE,2015:3431-3440.
[10] RONNEBERGER O,FISCHER P,BROX T.U-Net:Convolutional Network for Biomedical Image Segmentation[C]//Medical Image Computing and Computer-assisted Intervention-MICCAI 2015.Munich:Springer,2015:234-241.
[11] BADRINARAYANAN V,KENDALL A,CIPOLLA R.SegNet:A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(12):2481-2495.
[12] CHEN L C,ZHU Y K,PAPANDREOU G,et al.Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation[C]//Proceedings of the European Conference on Computer Vision (ECCV).Munich:Springer,2018:833-851.
[13] QIU W Y,GU L J,GAO F,et al.Building Extraction from Very High-resolution Remote Sensing Images Using Refine-UNet[J].IEEE Geoscience and Remote Sensing Letters,2023,20:6002905.
[14] ZHU Q,LIAO C,HU H,et al.MAP-Net:Multiple Attending Path Neural Network for Building Footprint Extraction from Remote Sensed Imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2021,59(7):6169-6181.
[15] 杨栋杰,高贤君,冉树浩,等.基于多重多尺度融合注意力网络的建筑物提取[J].浙江大学学报(工学版),2022,56(10):1924-1934.
[16] HANG R L,YANG P,ZHOU F,et al.Multiscale Progressive Segmentation Network for High-resolution Remote Sensing Imagery[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:5412012.
[17] LI X,WANG W H,HU X L,et al.Selective Kernel Networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE,2019:510-519.
[18] JI S P,WEI S Q,LU M.Fully Convolutional Networks for Multisource Building Extraction from an Open Aerial and Satellite Imagery Data Set[J].IEEE Transactions on Geoscience and Remote Sensing,2019,57(1):574-586.
[19] MAGGIORI E,TARABALKA Y,CHARPIAT G,et al.Can Semantic Labeling Methods Generalize to Any City?The Inria Aerial Image Labeling Benchmark[C]//2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).Fort Worth:IEEE,2017:3226-3229.
[20] JADON S.A Survey of Loss Functions for Semantic Segmentation[C]//2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB).Via del Mar:IEEE,2020:1-7.
[21] PASZKE A,CHAURASIA A,KIM S,et al.ENet:A Deep Neural Network Architecture for Real-time Semantic Segmentation[EB/OL].(2016-06-07) [2023-06-11].https://arxiv.org/abs/1606.02147.
[22] ZHANG H,ZHENG X C,ZHENG N S,et al.A Multiscale and Multipath Network with Boundary Enhancement for Building Footprint Extraction from Remotely Sensed Imagery[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2022,15:8856-8869.
基本信息:
DOI:
中图分类号:TP751;TU198
引用信息:
[1]宋宝贵,石卫超,余快.基于多尺度指导的遥感影像建筑物提取网络[J].无线电工程,2024,54(07):1694-1701.
基金信息:
国家自然科学基金青年项目(41901341)~~