593 | 8 | 52 |
下载次数 | 被引频次 | 阅读次数 |
路径规划和调度问题对无人机完成特定任务具有重要意义。针对蚁群算法容易陷入局部最优、迭代次数多和稳定性低等问题,提出了一种改进的基于禁忌搜索的蚁群算法(Improved Taboo Ant Colony Algorithm, ITAC),利用禁忌搜索算法的思想进行优势互补,旨在提高算法运行效率,增强全局搜索能力,更能适应解决更大规模的无人机调度问题,最大程度地节省配送成本,有助于高效地控制疫情的蔓延。实验针对3类不同患者数量(30,50和100例)的案例,分别使用10,20,30,50,100架无人机,进行了路径优化仿真。以无人机的使用数量、飞行总距离和算法运行时间为评估指标,将ITAC算法和3种常用路径规划算法(禁忌搜索算法、蚁群算法和Dijkstra算法)进行对比实验和分析,结果表明,4类算法均优化了3类案例中无人机的使用数量,其中ITAC算法表现最佳,在提供最佳路径的同时缩减了运算时间。
Abstract:Path planning and scheduling problems are of great significance for the UAV to complete specific tasks.For ant colony algorithm is easy to fall into local optimality, many iterations and low stability, an Improved Taboo Ant Colony Algorithm(ITAC) is proposed.Using the taboo search algorithm for complementary advantages aims to improve the operation efficiency of the algorithm, to enhance the global search ability, to better adapt to solve the scheduling problem of a large scale of UAVs, to save the distribution cost to the greatest extent, and to help to effectively control the spread of the epidemic.The experiments are conducted on three kinds of patients(30,50 and 100 cases) to simulate the phase of path planning by using 10,20,30,50 and 100 UAVs.The number of UAVs, total flight distance, algorithm running time are viewed as the evaluation indexes, the ITAC algorithm and three commonly-used path planning algorithms(taboo search algorithm, ant algorithm and Dijkstra algorithm) are compared in experiments and the results are discussed, and the results show that the number of UAVs of these four types of algorithms are optimized in three kinds of cases, the ITAC algorithm obtains the best performance, while providing the optimal path as well as reducing the calculation time.
[1] 索继江,闫中强,刘运喜,等.新型冠状病毒肺炎医院感染现状及预防控制策略与措施探讨[J].中华医院感染学杂志,2020,30(6):811-816.
[2] LIU K,CHEN Y,LIN R,et al.Clinical Features of COVID-19 in Elderly Patients:A Comparison with Young and Middle-aged Patients[J].Journal of Infection,2020,80(6):e14-e18.
[3] 刘君兰,张文博,姬红兵,等.无人机集群路径规划算法研究综述[J].航天电子对抗,2022,38(1):9-12.
[4] EUCHI J.Do Drones Have a Realistic Place in a Pandemic Fight for Delivering Medical Supplies in Healthcare Systems Problems?[J].Chinese Journal of Aeronautics,2021,34(2):182-190.
[5] XU C,LIAO X,TAN J,et al.Recent Research Progress of Unmanned Aerial Vehicle Regulation Policies and Technologies in Urban Low Altitude[J].IEEE Access,2020,8:74175-74194.
[6] 蒋磊.无人机多目标群最优侦察路径规划[J].信息技术与信息化,2022(2):203-206.
[7] LI B,WU Y.Path Planning for UAV Ground Target Tracking via Deep Reinforcement Learning[J].IEEE Access,2020,8:29064-29074.
[8] HE W,QI X,LIU L.A Novel Hybrid Particle Swarm Optimization for Multi-UAV Cooperate Path Planning[J].Applied Intelligence,2021,51(10):7350-7364.
[9] WU P,WANG Y,WANG B.An Ant Colony Algorithm for Drone Path Planning[C]//Proceedings of 2020 5th International Conference on Mechanical,Control and Computer Engineering.Harbin:IEEE,2020:1559-1562.
[10] RAY P P,NGUYEN K.A Review on Blockchain for Medical Delivery Drones in 5G-IoT Era:Progress and Challenges[C]//Proceedings of 2020 IEEE International Conference on Communications in China.Chongqing:IEEE,2020:29-34.
[11] SAEED F,MEHMOOD A,MAJEED M F,et al.Smart Delivery and Retrieval of Swab Collection Kit for COVID-19 Test Using Autonomous Unmanned Aerial Vehicles[J].Physical Communication,2021,48:1-16.
[12] LAMPTEY E,SERWAA D.The Use of Zipline Drones Technology for COVID-19 Samples Transportation in Ghana[J].HighTech and Innovation Journal,2020,1(2):67-71.
[13] 田旭,李杰.一种改进的果蝇优化算法及其在气动优化设计中的应用[J].航空学报,2017,38(4):60-70.
[14] LUO Q,WANG H,ZHENG Y,et al.Research on Path Planning of Mobile Robot Based on Improved ant Colony Algorithm[J].Neural Computing and Applications,2020,32(6):1555-1566.
[15] LI G,LI J.An Improved Tabu Search Algorithm for the Stochastic Vehicle Routing Problem with Soft Time Windows[J].IEEE Access,2020,8:158115-158124.
[16] 陈展,公建宁,刘媛媛,等.基于禁忌搜索的多AGV系统路径优化算法[J].计算机工程与应用,2021,57(10):273-278.
[17] 章胤,许耀丹,宋彦儒,等.基于Dijkstra算法的多无人机协同作业[J].当代教育实践与教学研究,2020(1):241-242.
[18] WANG H,ZHANG H J,WANG K,et al.Off-road Path Planning Based on Improved Ant Colony Algorithm[J].Wireless Personal Communications,2018,102(2):1705-1721.
[19] VILORIA A,ZELAYA N A L,VARELA N.Search for Optimal Routes on Roads Applying Metaheuristic Algorithms[J].Procedia Computer Science,2020,175:447-452.
[20] WANG Y L,WU Z P,GUAN G,et al.Research on Intelligent Design Method of Ship Multi-deck Compartment Layout Based on Improved Taboo Search Genetic Algorithm[J].Ocean Engineering,2021,225(2):2575-2577.
[21] ZHANG Y,CHEN Y,LI H,et al.Path Planning of UHV Live Working Hanging Basket Method Based on Grid-ant Colony Algorithm[J].International Journal of Applied Electromagnetics and Mechanics,2021 (7):1-16.
[22] XIONG N,ZHOU X,YANG X,et al.Mobile Robot Path Planning Based on Time Taboo Ant Colony Optimization in Dynamic Environment[J].Frontiers in Neurorobotics,2021,15:6427-6433.
基本信息:
DOI:
中图分类号:R181;TP18
引用信息:
[1]陈琴,魏军平,刘洋等.基于禁忌搜索算法的传染病样本收集无人机调度方法[J].无线电工程,2022,52(07):1238-1249.
基金信息:
国家自然科学基金(61772091,61802035,61962006); 四川省科技计划项目(2021JDJQ0021,2022YFG0186,2021YZD0009,2021ZYD0033); 成都市技术创新研发项目(2021-YF05-00491-SN,2021-YF05-02414-GX,2021-YF05-02413-GX,2021-YF05-02420-GX,2021-YF05-02424-GX); 成都市重大科技创新项目(2021-YF08-00156-GX,2021-YF08-00159-GX); 成都市“揭榜挂帅”科技项目(2021-JB00-00025-GX)~~