国防科技大学系统工程学院;
卫星在阴影区运行时需要蓄电池提供能源,而锂离子电池由于能量密度大、自放电率低、循环寿命长的优点逐渐成为多数卫星的选择。卫星蓄电池在外太空工作时,容量会随着循环次数的增多而逐渐下降。针对这种健康状态(State of Health,SOH)退化的问题,提出一种基于粒子群算法(Particle Swarm Optimization,PSO)的上下边界估计(Lower Upper Bound Estimation,LUBE)神经网络建立预测模型,将放电过程中的截止电压、样本熵和工作温度作为神经网络模型输入,电池SOH作为神经网络模型输出。在提高预测区间覆盖率(Prediction Intervals Coverage Probability,PICP)的同时减少预测区间宽度(Normalized Mean Prediction Intervals Width,NMPIW),构建了集成指标(Coverage Width-based Criterion,CWC)。基于该指标函数的不可微性,采用PSO优化神经网络模型使CWC尽可能地降低以兼顾PICP和NMPIW指标的最优。采用NASA的18号电池测试数据,对所提区间预测算法的有效性进行了分析验证。
315 | 3 | 18 |
下载次数 | 被引频次 | 阅读次数 |
[1] PENG X Y,PANG J Y,PENG Y,et al.Review on Anomaly Detection of Spacecraft Telemetry Data[J].Chinese Journal of Scientific Instrument,2016,37(9):1929-1945.
[2]曹孟达,张涛,李训嘉,等.一种基于聚类的卫星太阳电池阵衰减估计方法[J].无线电工程,2019,49(5):397-403.
[3] TAGUCHI M.24.7%Record Efficiency Hit Solar Cell on Thin Silicon Wafer[J]. Photovoltaics,IEEE Journal of,2014,4(1):96-99.
[4] ZHANG B Z.Evolution and Application of PHM Technologies[J]. Measurement and Control Technology,2008,27(2):5-7.
[5]吴建若.太阳同步轨道卫星电源系统的研究与发展[J].世界导弹与航天,1990(8):37-38.
[6] AN X Y,TAN L S.Development of Lithium-ion Batteries as New Power Sources for Space Application[J]. Power technology,2006(1):70-73.
[7]吴赟,蒋新华,解晶莹.锂离子电池循环寿命快速衰减的原因[J].电池,2009,39(4):206-207.
[8] ZHANG Q,WHITE R E.Capacity Fade Analysis of a Lithium Ion Cell[J]. Journal of Power Sources,2008,179(2):793-798.
[9]申江卫,苏晓波,王泽林,等.基于混合算法的电池健康状态估计[J].电源技术,2018,42(6):874-876.
[10] WIDODO A,SHIM M C,CAESARENDRA W,et al.Intelligent Prognostics for Battery Health Monitoring Based on Sample Entropy[J]. Expert Systems with Applications,2011,38(9):11763-11769.
[11] CUI H J,MIAO Q,LIANG W,et al. Application of Unscented Particle Filter in Remaining Useful Life Prediction of Lithium-ion Batteries[C]∥Prognostics and System Health Nanagement Conference,2012.
[12]袁晓辉,王乘,张勇传,等.粒子群优化算法在电力系统中的应用[J].电网技术,2004,28(19):14-19.
[13]郑贵文,蒋奎.基于粒子群算法的雷达网优化部署方法研究[J].无线电工程,2016,46(1):42-45.
[14] CHENG L,TANG A,WANG W.A Review of SOH Estimation Methods in Lithium-ion Batteries for Electric Vehicle Applications[J].Energy Procedia,2015,75:1920-1925.
[15]张凝,徐皑冬,王锴,等.基于粒子滤波算法的锂离子电池剩余寿命预测方法研究[J].高技术通讯,2017,27(8):699-707.
[16]闫晓华.空间电源系统仿真及锂离子电池剩余寿命预测研究[D].哈尔滨:哈尔滨工业大学,2015.
[17]韩丽,戴广剑,李宁,等.基于GA-Elman神经网络的电池劣化程度预测研究[J].电源技术,2013,37(2):249-250.
[18]徐崇彦,何川东,邹冬冬.基于贪婪策略的灵巧卫星启发式任务规划算法[J].无线电工程,2018,48(10):908-912.
[19]刘大同.锂离子电池健康评估和寿命预测综述[J].仪器仪表学报,2015,36(1):1-16.
[20]吴婧睿.基于GSO-ELM的锂离子电池剩余寿命间接预测方法研究[D].大连:大连海事大学,2017.
[21]罗悦.基于粒子滤波的锂离子电池剩余寿命预测方法研究[D].哈尔滨:哈尔滨工业大学,2012.
[22] SAHA B,KAI G,POLL S,et al.Prognostics Methods for Battery Health Monitoring Using a Bayesian Framework[J]. IEEE Transactions on Instrumentation&Measurement,2009,58(2):291-296.
[23]邓伟锋,李振璧.基于GA优化BP神经网络的微电网蓄电池健康状态评估[J].电测与仪表,2018,55(21):56-60.
[24] RICHMAN J S,RANDALL J R.Physiological Time-series Analysis,Using Approximate Entropy and Sample Entropy[J]. American Journal of Physiology-Heart and Circulatory Physiology(Print),2000,278(6):H2039-H2049.
[25] ALCARAZ R,RIETA J J. A Review on Sample Entropy Applications for the Non-invasive Analysis of Atrial Fibrillation Electrocardiograms[J]. Biomedical Signal Processing&Control,2010,5(1):1-14.
[26] GRASSBERGER P,PROCACCIA I. Measuring the Strangeness of Strange Attractors[M]. New York:The Theary of Chaotic auractors,Springer,2004.
[27] KHOSRAVI A,NAHAVANDI S,CREIGHTON D,et al.Comprehensive Review of Neural Metwork-based Prediction Intervals and Nw Avances[J]. IEEE Transactions on Neural Networks,2011,22(9):1341-1356.
[28] KENNEDY J,EBERHART R.Particle Swarm Optimization[C]∥Proc. of 1995 IEEE Int. Conf. Neural Networks,1995.
[29]杨维,李歧强.粒子群优化算法综述[J].中国工程科学,2004,6(5):87-94.
[30]杨锡运,关文渊,刘玉奇,等.基于粒子群优化的核极限学习机模型的风电功率区间预测方法[J].中国电机工程学报,2015,35(S1):146-153.
[31]王业琴,刘一星.粒子群优化神经网络电动汽车SOC估算方法[J].电源技术,2013,37(5):800-803.
基本信息:
DOI:
中图分类号:V474;TM912;TP18
引用信息:
[1]曹孟达,张涛,李文桦等.基于粒子群算法的卫星蓄电池区间预测方法[J].无线电工程,2020,50(04):285-293.
基金信息:
装备技术基础项目(181GF35003)~~