nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2022 12 v.52 2211-2221
利用分层特征组合策略的全极化SAR山区积雪识别
基金项目(Foundation): 福建省自然科学基金(2019J01853); 厦门理工学院科研攀登计划(XPDKT19015)~~
邮箱(Email):
DOI:
中文作者单位:

厦门理工学院计算机与信息工程学院;

摘要(Abstract):

积雪作为冰冻圈重要组成部分,与全球气候变化和生态系统密切相关,精准识别积雪分布信息具有重要意义。合成孔径雷达(Synthetic Aperture Radar, SAR)数据的极化和散射特征在积雪识别中具有极大的应用潜力。以新疆玛纳斯河流域为研究区,提取全极化Radarsat-2数据后向散射特征和目标极化分解特征;为探索极化特征和散射特征对积雪识别的贡献,将获取的特征进行组合,得到3种特征集;采用随机森林算法对研究区积雪进行识别提取。结果显示,基于随机森林的Radarsat-2极化特征结合散射特征识别结果的总体精度和调和平均值(F1)达到最高,分别为83.00%和0.82,仅基于极化特征识别结果总体精度和F1分别为77.5%和0.76。研究结果表明,与单一极化特征相比,结合散射特征和极化特征能有效提高积雪识别精度,对山区大范围积雪识别具有极大的潜力。

关键词(KeyWords): 积雪识别;Radarsat-2;后向散射特征;极化分解;随机森林
参考文献

[1] 李新,车涛.积雪被动微波遥感研究进展[J].冰川冻土,2007(3):487-496.

[2] 沈永平,苏宏超,王国亚,等.新疆冰川、积雪对气候变化的响应(Ⅰ):水文效应[J].冰川冻土,2013,35(3):513-527.

[3] TSAI Y S,DIETZ A,OPPELT N,et al.Remote Sensing of Snow Cover Using Spaceborne SAR:A Review[J].Remote Sensing,2019,11(12):1-44.

[4] 孙少波,车涛.基于合成孔径雷达(SAR)的积雪监测研究进展[J].冰川冻土,2013,35(3):636-647.

[5] HUANG L,LI Z,TIAN B,et al.Recognition of Supraglacial Debris in the Tianshan Mountains on Polarimetric SAR Images[J].Remote Sensing of Environment,2014,145:47-54.

[6] NGHIEM S V,TSAI W Y.Global Snow Cover Monitoring with Spaceborne Ku-band Scatterometer[J].IEEE Transactions on Geoscience and Remote Sensing,2001,39(10):2118-2134.

[7] TEDESCO M,MILLER J.Observations and Statistical Analysis of Combined Active-passive Microwave Space-borne Data and Snow Depth at Large Spatial Scales[J].Remote Sensing of Environment,2007,111(2-3):382-397.

[8] SHI J C,DOZIER J.Mapping Seasonal Snow with SIR-C/X-SAR in Mountainous Areas[J].Remote Sensing of Environment,1997,59(2):294-307.

[9] NAGLER T,ROTT H.Retrieval of Wet Snow by Means of Multitemporal SAR Data[J].IEEE Transactions on Geoscience and Remote Sensing,2000,38(2):754-765.

[10] SHI J,HENSLEY S,DOZIER J.Mapping Snow Cover with Repeat Pass Synthetic Aperture Radar[C]//IGARSS’97.1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings.Remote Sensing-A Scientific Vision for Sustainable Development.Singapore:IEEE,1997:628-630.

[11] 李震,郭华东,李新武,等.SAR干涉测量的相干性特征分析及积雪划分[J].遥感学报,2002,6(5):334-338.

[12] SINGH G,VENKATARAMAN G,YAMAGUCHI Y,et al.Capability Assessment of Fully Polarimetric ALOS-PALSAR Data for Discriminating Wet Snow from Other Scattering Types in Mountainous Regions[J].IEEE Transactions on Geoscience and Remote Sensing,2014,52(2):1177-1196.

[13] LONGEPE N,ALLAIN S,FERRO-FAMIL L,et al.Snowpack Characterization in Mountainous Regions Using C-band SAR Data and a Meteorological Model[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(2):406-418.

[14] SINGH G,VENKATARAMAN G.Application of Incoherent Target Decomposition Theorems to Classify Snow Cover over the Himalayan Region[J].International Journal of Remote Sensing,2012,33(13):4161-4177.

[15] 肖鹏峰,冯学智,谢顺平,等.新疆天山玛纳斯河流域高分辨率积雪遥感研究进展[J].南京大学学报(自然科学),2015,51(5):909-920.

[16] 贺广均,冯学智,肖鹏峰,等.玛纳斯河流域山区积雪的C波段SAR图像表征[J].南京大学学报(自然科学),2015,51(5):955-965.

[17] DONG J,XIAO X,SHELDON S,et al.A Comparison of Forest Cover Maps in Mainland Southeast Asia from Multiple Sources:PALSAR,MERIS,MODIS and FRA[J].Remote Sensing of Environment,2012,127:60-73.

[18] 黄翀,张晨晨,刘庆生,等.结合光学与雷达影像多特征的热带典型人工林树种精细识别[J].林业科学,2021,57(7):80-91.

[19] CLOUDE S R,POTTIER E.A Review of Target Decomposition Theorems in Radar Polarimetry[J].IEEE Transactions on Geoscience and Remote Sensing,1996,34(2):498-518.

[20] FREEMAN A,DURDEN S L.A Three-component Scattering Model for Polarimetric SAR Data[J].IEEE Transactions on Geoscience and Remote Sensing,1998,36(3):963-973.

[21] CLOUDE S R,POTTIER E.An Entropy Based Classification Scheme for Land Applications of Polarimetric SAR[J].IEEE Transactions on Geoscience and Remote Sensing,1997,35(1):68-78.

[22] YAMAGUCHI Y,YAJIMA Y,YAMADA H.A Four-component Decomposition of POLSAR Images Based on the Coherency Matrix[J].IEEE Geoscience and Remote Sensing Letters,2006,3(3):292-296.

[23] 徐乔,张霄,余绍淮,等.综合多特征的极化SAR图像随机森林分类算法[J].遥感学报,2019,23(4):685-694.

[24] DU P,SAMAT A,WASKE B,et al.Random Forest and Rotation Forest for Fully Polarized SAR Image Classification Using Polarimetric and Spatial Features[J].ISPRS Journal of Photogrammetry and Remote Sensing,2015,105:38-53.

[25] BAUMANN M,OZDOGAN M,KUEMMERLE T,et al.Using the Landsat Record to Detect Forest-cover Changes During and After the Collapse of the Soviet Union in the Temperate Zone of European Russia[J].Remote Sensing of Environment,2012,124:174-184.

[26] 肖艳,王斌.基于面向对象的极化雷达影像分类[J].红外与毫米波学报,2020,39(4):505-512.

[27] 侯敬怡,张延成,范文义.结合干涉特征的极化SAR图像监督分类——将乐林场的林分类型识别[J].东北林业大学学报,2020,48(11):33-38.

基本信息:

DOI:

中图分类号:P426.635;TN957.52

引用信息:

[1]康璇,李晖,黄林.利用分层特征组合策略的全极化SAR山区积雪识别[J].无线电工程,2022,52(12):2211-2221.

基金信息:

福建省自然科学基金(2019J01853); 厦门理工学院科研攀登计划(XPDKT19015)~~

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文