589 | 8 | 10 |
下载次数 | 被引频次 | 阅读次数 |
在B5G/6G网络中,尽管无人机(Unmanned Aerial Vehicle, UAV)可以作为移动边缘计算(Mobile Edge Computing, MEC)的服务器为地面终端(Ground Terminal, GT)提供通信和计算服务,但仍然面临着因为移动性而导致通信链路被周围障碍物阻挡的挑战。可重构智能表面(Reconfigurable Intelligent Surface, RIS)可以有效地辅助UAV改善与GT的通信链路质量,保证MEC的时延要求。提出了一种RIS辅助的UAV轨迹和计算策略联合优化方案,以最小化MEC的服务能耗为目标,联合优化UAV的三维轨迹、计算任务分发和缓存资源分配。利用连续凸逼近(Successive Convex Approximation, SCA)方法对原始的非凸联合优化问题进行了求解。仿真实验中,选取UAV轨迹固定和计算策略固定的方案为对比依据,验证了所提方案的有效性。结果表明,所提方案在能耗和数据传输速率上均有明显的性能提升。
Abstract:In B5G/6G networks, although the Unmanned Aerial Vehicle(UAV) can be used as a server for Mobile Edge Computing(MEC) to provide communication and computing services for Ground Terminals(GT), there still exists the challenge of communication link being blocked by surrounding obstacles due to mobility. Reconfigurable Intelligent Surface(RIS) can effectively assist UAV to improve the communication link quality with GT and ensure the delay requirements of MEC service. A joint optimization scheme for RIS-assisted UAV trajectory and computing policy is proposed, which jointly optimize UAV 3D-trajectory, computation task distribution and cache resource allocation to minimize the energy consumption of MEC service. The original non-convex joint optimization problem is solved by Successive Convex Approximation(SCA) method. In the simulation experiment, the scheme with fixed UAV trajectory and the scheme with fixed computing policy are selected as the benchmarks to verify the effectiveness of the proposed scheme. The results show that the proposed scheme has significant performance improvement on energy consumption and data transmission rate.
[1] HU X,WONG K K,YANG K.Wireless Powered Cooperation-Assisted Mobile Edge Computing[J].IEEE Transactions on Wireless Communications,2018,17(4):2375-2388.
[2] DU Y,YANG K,WANG K,et al.Joint Resources and Workflow Scheduling in UAV-enabled Wirelessly-powered MEC for IoT Systems[J].IEEE Transactions on Vehicular Technology,2019,68(10):10187-10200.
[3] ZHOU F,WU Y,HU R Q,et al.Computation Rate Maximization in UAV-enabled Wireless-powered Mobile-edge Computing Systems[J].IEEE Journal on Selected Areas in Communications,2018,36(9):1927-1941.
[4] HU Q,CAI Y,YU G,et al.Joint Offloading and Trajectory Design for UAV-enabled Mobile Edge Computing Systems[J].IEEE Internet of Things Journal,2019,6(2):1879-1892.
[5] MEI H,WANG K,ZHOU D,et al.Joint Trajectory-task-cache Optimization in UAV-enabled Mobile Edge Networks for Cyber-physical System[J].IEEE Access,2019,7:156476-[5] 156488.
[6] ZHOU F,HU R Q,LI Z,et al.Mobile Edge Computing in Unmanned Aerial Vehicle Networks[J].IEEE Wireless Communications,2020,27(1):140-146.
[7] ZHAO J,LI Q,GONG Y,et al.Computation Offloading and Resource Allocation for Cloud Assisted Mobile Edge Computing in Vehicular Networks[J].Transactions on Vehicular Technology,2019,68(8):7944-7956.
[8] LI S,DUO B,YUAN X,et al.Reconfigurable Intelligent Surface Assisted UAV Communication:Joint Trajectory Design and Passive Beamforming[J].IEEE Wireless Communications Letters,2020,9(5):716-720.
[9] MEI H,YANG K,SHEN J,et al.Joint Trajectory-task-cache Optimization with Phase-shift Design of RIS-assisted UAV for MEC[J].IEEE Wireless Communications Letters,2021,10(7):1586-1590.
[10] DI RENZO M,ZAPPONE A,DEBBAH M,et al.Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces:How it Works,State of Research,and Road Ahead[J].IEEE Journal on Selected Areas in Communications,2020,38(11):2450-2525.
[11] HUANG C,ZAPPONE A,ALEXANDROPOULOS G,et al.Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication[J].IEEE Transactions on Wireless Communications,2019,18(8):4157-4170.
[12] YANG J N,CHEN J J,YANG Z L.Energy-efficient UAV Communication with Trajectory Optimization[C]//2021 2nd International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE).Zhuhai:IEEE,2021:508-514.
[13] ZENG Y,ZHANG R.Energy-efficient UAV Communication with Trajectory Optimization[J].IEEE Transactions on Wireless Communications,2017,16(6):3747-3760.
[14] LI S,ZHANG N,CHEN H,et al.Joint Subcarrier Allocation,Modulation Mode Selection,and Trajectory Design in a UAV-based OFDMA Network[J].IEEE Communications Letters,2022,26(9):2111-2115.
[15] ZENG Y,XU J,ZHANG R.Energy Minimization for Wireless Communication With Rotary-wing UAV[J].IEEE Transac-tions on Wireless Communications,2019,18(4):2329-2345.
[16] YU Z,GONG Y,GONG S,et al.Joint Task Offloading and Resource Allocation in UAV-enabled Mobile Edge Computing[J].IEEE Internet of Things Journal,2020,7(4):3147-3159.
[17] CHEN M,MOZAFFARI M,SAAD W,et al.Caching in the Sky:Proactive Deployment of Cache-enabled Unmanned Aerial Vehicles for Optimized Quality-of-Experience[J].IEEE Journal on Selected Areas in Communications,2017,35(5):1046-1061.
[18] ZHAN C,LAI H.Energy Minimization in Internet-of-Things System Based on Rotary-wing UAV[J].IEEE Wireless Communications Letters,2019,8(5):1341-1344.
[19] BOYD S,VANDENBERGHE L.Convex Optimization[M].Cambridge:Cambridge University Press,2004.
[20] GRANT M,BOYD S.CVX:Matlab Software for Disciplined Convex Programming[EB/OL].[2022-08-18].http://cvxr.com/cvx.
基本信息:
DOI:
中图分类号:TN929.5;V279
引用信息:
[1]刘昊洋,杨金松,孙三山等.MEC中RIS辅助的无人机轨迹和计算策略联合优化[J].无线电工程,2023,53(01):18-25.
基金信息:
四川省自然科学基金(2022NSFSC0480)~~