辽宁工程技术大学测绘与地理科学学院遥感科学与应用研究院;桂林理工大学测绘地理信息学院;
为了在高光谱影像分类过程中有效地利用波段信息,在传统K均值算法的基础上引入特征加权的思想,使得在聚类过程中能够充分合理利用各波段信息。该算法中,根据波段影像的熵、标准差、均值及互信息等统计信息的函数定义波段权重;根据波段对聚类的重要性定义波段-类别权重,并且定义其熵信息测度作为约束项。对Salinas高光谱影像分别采用本文算法和传统K均值算法进行实验,从总精度及Kappa值方面来看,该算法都比传统K均值算法的数值高,由此说明引入波段权重及波段-类别权重的有效性。
356 | 5 | 11 |
下载次数 | 被引频次 | 阅读次数 |
[1] 杜培军,夏俊士,薛朝辉,等.高光谱遥感影像分类研究进展[J].遥感学报,2016,20(2):236-256.
[2] 童庆禧,张兵,张立福.中国高光谱遥感的前沿进展[J].遥感学报,2016,20(5):689-707.
[3] 陈云浩,王思佳,赵逸飞,等.农业高光谱遥感研究进展及发展趋势[J].地理与地理信息科学,2019,35(5):1-8.
[4] SHANG K,ZHANG X,SUN Y L,et al.Sophisticated Vegetation Classification Based on Feature Band Set Using Hyperspectral Image[J].Guang Pu Xue Yu Guang Pu Fen Xi,2015,35(6):1669-1676.
[5] NATALE V G,KAFRI A,TIDHAR G A,et al.SHALOM—Space-borne Hyperspectral Applicative Land and Ocean Mission[C]//2013 5th Workshop on Hyperspectral Image and Signal Processing:Evolution in Remote Sensing (WHISPERS).Gainesville:IEEE,2013:1-4.
[6] SUN H,ZHENG T,LIU N,et al.Vertical Distribution of Chlorophyll in Potato Plants Based on Hyperspectral Imaging[J].Transactions of the Chinese Society of Agricultural Engineering,2018,34(1):149-156.
[7] ZHOU C,WANG D,CHEN S,et al.Vegetation Corrected Continuum Depths Model and Its Application in Mineral Extraction from Hyperspectral Image[J].Diqiu Kexue-Zhongguo Dizhi Daxue Xuebao/Earth Science-Journal of China University of Geosciences,2015,40(8):1365-1370.
[8] 吴欣.利用红外高光谱数据反演大气参数廓线的方法和应用研究[D].合肥:中国科学技术大学,2019.
[9] 彭令,梅军军,王娜,等.工矿业城市区域水质参数高光谱定量反演[J].光谱学与光谱分析,2019,39(9):2922-2928.
[10] GU X H,WANG Y C,SUN Q,et al.Hyperspectral Inversion of Soil Organic Matter Content in Cultivated Land Based on Wavelet Transform[J].Computers and Electronics in Agriculture,2019,167.
[11] NAMES B,AOIFE G.Data Handling in Hyperspectral Image Analysis[J].Chemometrics and Intelligent Laboratory Systems,2011,108(1):13-22.
[12] 岑奕,张艮中,张立福,等.地物光谱不确定性及光谱角制图算法适用性研究[J].光谱学与光谱分析,2015,35(10):2841-2845.
[13] HOU XY,LI Q L,WANG Q,et al.An Improved SAM Algorithm for Red Blood Cells and White Blood Cells Segmentation[C]//2016 9th International Congress on Image and Signal Processing,BioMedical Engineering and Informatics (CISP-BMEI).Datong:IEEE,2016:651-655.
[14] 郑建鸿,吴瑞梅,熊俊飞,等.基于光谱角算法的鲜茶叶表面农药残留荧光高光谱图像无损检测研究[J].激光杂志,2016,37(6):57-60.
[15] DU Q,FOWLER J E.Low-Complexity Principal Component Analysis for Hyperspectral Image Compression[J].International Journal of High Performance Computing Applications,2008,22(4):438-448.
[16] WANG J,CHANG C I.Independent Component Analysis-based Dimensionality Reduction with Applications in Hyperspectral Image Analysis[J].IEEE Transactions on Geoscience and Remote Sensing,2006,44(6):1586-1600.
[17] 阎庆.基于局部线性嵌入的降维算法研究及其在精准农业中的应用[D].合肥:安徽大学,2014.
[18] 杨国鹏,余旭初.基于非线性判别分析的高光谱影像特征提取[J].测绘科学,2007(5):91-93.
[19] WANG Y T,HUANG S Q,LIU Z G,et al.Locality Preserving Projection Based on Endmember Extraction for Hyperspectral Image Dimensionality Reduction and Target Detection[J].Applied Spectroscopy,2016,70(9):1573-1581.
[20] LAZCANO R,MADRO A D,SALVADOR R,et al.Porting a PCA-based Hyperspectral Image Dimensionality Reduction Algorithm for Brain Cancer Detection on a Manycore Architecture[J].Journal of Systems Architecture,2017,77:101-111.
[21] 王立国,赵亮,刘丹凤.基于人工蜂群算法高光谱图像波段选择[J].哈尔滨工业大学学报,2015,47(11):82-88.
[22] 彭艳斌,郑志军,潘志刚,等.基于流形波段选择的高光谱图像分类[J].光电子·激光,2016,27(6):670-674.
[23] 赵亮,王立国,刘丹凤.高光谱图像子空间的波段选择[J].遥感学报,2019,23(5):904-910.
[24] HU P,LIU X B,CAI Y M,et al.Band Selection of Hyperspectral Images Using Multiobjective Optimization-Based Sparse Self-Representation[J].IEEE Geoscience and Remote Sensing Letters,2018,99:1-5.
[25] 贾隆嘉.文本分类中特征加权算法和文本表示策略研究[D].长春:东北师范大学,2016.
[26] SELIM S Z,ISMAIL M A.K-Means-Type Algorithms:a Generalized Convergence Theorem and Characterization of Local Optimality[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1984,6(1):81-87.
[27] KANUNGO T,MOUNT D M,NETANYAHU N S,et al.An Efficient K-means Clustering Algorithm:Analysis and Implementation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(7):881-892.
[28] STARK J A.Adaptive Image Contrast Enhancement Using Generalizations of Histogram Equalization[J].IEEE Transactions on Image Processing,2000,9(5):889-896.
[29] COIFMAN R R,WICHERHAUSER M V.Entropy-based Algorithms for Best Basis Selection[J].IEEE Transactions on Information Theory,1992,38(2):713-718.
[30] 王宇,王宝山,王田,等.面向遥感图像水域分割的图像熵主动轮廓模型[J].光学精密工程,2018,26(3):698-707.
[31] ZHAO X M,GAO L R,CHEN Z C,et al.An Entropy and MRF Model-Based CNN for Large-Scale Landsat Image Classification[J].IEEE Geoscience and Remote Sensing Letters,2019,7:1-5.
[32] 王志衡,吴福朝.均值-标准差描述子与直线匹配[J].模式识别与人工智能,2009,22(1):32-39.
[33] 王琪,杨桄,张俭峰,等.结合K-L散度和互信息的无监督波段选择算法[J].激光技术,2018,42(3):417-421.
[34] PENG H C,LONG F H,DING C.Feature Selection Based on Mutual Information:Criteria of Max-Dependency,Max-Relevance,and Min-Redundancy[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(8):1226-1238.
基本信息:
DOI:
中图分类号:TP751
引用信息:
[1]李玉,甄畅,石雪等.基于波段加权K均值聚类的高光谱影像分类[J].无线电工程,2020,50(11):911-916.
基金信息:
国家自然科学基金青年科学基金资助项目(41301479);; 辽宁省高校创新人才支持计划项目(LR2016061);; 辽宁省教育厅科学技术研究一般项目(LJCL009)~~