213 | 4 | 17 |
下载次数 | 被引频次 | 阅读次数 |
联合概率数据关联(JPDA)算法对单传感器多目标跟踪是一种良好的算法,但对于多传感器密集多目标跟踪,则计算量剧增,数据关联成功率下降。因此,改进联合概率数据关联(AJPDA)算法对多传感器多目标量测进行同源划分及单一传感器测量数据转换,然后采用JPDA算法求解空间目标轨迹交叉时的数据关联。仿真结果表明,AJPDA算法提高了成功关联概率,降低了求解数据关联概率的难度,可以解决密集目标的正确跟踪问题。
Abstract:The joint probabilistic data association(JPDA) algorithm is a good method for the single sensor multitarget tracking.However,for the multisensor-multitarget(MSMT) tracking in clutter,its calculation load comes higher and it may cause the incorrect association data.Therefore,the amended joint probabilistic data association(AJPDA) algorithm for MSMT tracking is proposed in this paper.The same source observations are classified into the same set.Then the JPDA algorithm can be used to obtain the data association when the space target traces crossing.The simulation results show that the AJPDA algorithm can increase the successful rate of data association,and reduce calculation complexity.This algorithm can make the sensor correctly track densely distributed targets.
[1]何友,王国宏,彭应宁,等.多传感器信息融合及应用(第2版)[M].北京:电子工业出版社,2007.
[2]杨万海.多传感器数据融合及其应用[M].西安:西安电子科技大学出版社,2004.
[3]耿峰,祝小平.一种改进的多传感器多目标跟踪联合概率数据关联算法研究[J].系统仿真学报,2007,19(20):4671-4675.
[4]夏南银,张守信,穆鸿飞.航天测控系统[M].北京:国防工业出版社,2002.
[5]王正明.弹道跟踪数据的校准与评估[M].长沙:国防科技大学出版社,1999.
[6]蔡庆宇.相控阵雷达数据处理及其仿真技术[M].北京:国防工业出版社,1997.
基本信息:
DOI:
中图分类号:TN953
引用信息:
[1]孙俊生,王建民,王维锋.多传感器多目标联合概率数据关联研究[J].无线电工程,2009,39(11):19-21.
基金信息: