745 | 12 | 18 |
下载次数 | 被引频次 | 阅读次数 |
气温变化与人类的生产生活密切相关,对人类出行计划、农林生产以及军事作战等方面都有着重要影响,因此对于大气温度更加精准的预测具有一定现实意义。针对传统预测模型对气温预测精度不佳的问题,提出了一种融合极端梯度提升树(Extreme Gradient Boosting, XGBoost)和改进长短期时序网络(Long and Short-Term Temporal Patterns with Deep Neural Network, LSTNet)的气温预测模型。利用XGBoost进行特征筛选,降低数据维度;利用LSTNet进行改进,在其卷积层嵌入通道注意力(Channel Attention, CA)机制,强化显著特征;把循环神经网络层中的循环门单元(Gate Recurrent Unit, GRU)改为双向长短时记忆网络(Bidirectional Long Short-Term Memory, BiLSTM),并加入了时序注意力(Temporal Attention, TA)机制,使模型拥有同时提取正反向信息的能力且突出了重要时间步的信息;用建立好的模型进行预测实验和对比实验。实验结果表明,提出的改进模型在气温单步预测时,平均绝对误差(Mean Absolute Error, MAE)为0.303℃,相较于长短期记忆(Long Short-Term Memory, LSTM)神经网络等对比模型,MAE最多降低3.429℃,最少降低0.225℃;多步预测时,MAE随时间步增加,最多降低3.827℃,最少降低0.288℃,说明所提模型在单步预测和多步预测上预测精度都更高,优于同类模型。
Abstract:Temperature change is closely related to human production and life.It has an important impact on human travel planning, agricultural and forestry production and military operations.Therefore, it is of certain practical significance to make more accurate prediction of atmospheric temperature.To address the low accuracy of traditional temperature prediction models, a temperature prediction model integrated with Extreme Gradient Boosting(XGBoost) and improved Long and Short-term Temporal Patterns with Deep Neural Network(LSTNet) is proposed.Firstly, XGBoost is used for feature filtering to reduce the data dimension.Then, LSTNet is improved by embedding the Channel Attention(CA) mechanism in its convolution layer to strengthen the salient features, the Gate Recurrent Unit(GRU) in the cyclic neural network layer is replaced by BiLSTM,and the Temporal Attention(TA) mechanism is added to make the model be able to extract the forward and reverse information at the same time and highlight the information of important time steps.Finally, prediction experiment and comparison experiment are carried out with the established model.The experimental results show that the Mean Absolute Error(MAE) of the proposed model is 0.303 ℃.As compared with comparison models such as LSTM neural network, the MAE decreases by 3.429 ℃ at the maximum and 0.225 ℃ at the minimum.In multi-step prediction, the MAE decreases by 3.827 ℃ at the maximum and 0.288 ℃ at the minimum with the increase of time step, which indicates that the proposed improved model is better than similar models with a higher prediction accuracy in single-step and multi-step prediction.
[1] 汪子琦,苏静文,韩情.基于QAR-EGARCH模型组合预测的气温研究——以合肥市为例[J].合肥师范学院学报,2020,38(3):38-42.
[2] 王源昊.基于ARIMA模型和LSTM神经网络的全球气温预测分析[J].科学技术创新,2021(35):166-170.
[3] 吴永涛,陈金车,徐延欣,等.基于支持向量机的张掖市温度预报研究[J].甘肃科技,2022,38(5):26-28.
[4] 蒋艮维.PSO-RBF-ANN在气温预测中的应用[J].信息与电脑(理论版),2020,32(9):38-42.
[5] 陶晔,杜景林.基于随机森林的长短期记忆网络气温预测[J].计算机工程与设计,2019,40(3):737-743.
[6] 常婷婷,张颜颜,澈格乐根,等.基于长短期时间序列网络的氧气需求量预测[J].冶金自动化,2022,46(3):25-33.
[7] 魏荣耀,鲍士兼,赵成林,等.基于卡尔曼滤波改进的MTCNN网络人脸检测算法[J].无线电工程,2020,50(3):193-198.
[8] 廖列法,谢树松.基于注意力机制特征融合的中文命名实体识别[J/OL].(2022-08-09) [2022-09-11].doi:10.19678/j.issn.1000-3428.0064432.
[9] 刘威,尹飞.一种基于LSTM模型的水库水位预测方法[J].无线电工程,2022,52(1):83-87.
[10] 张照贝,顾春华,温蜜.基于XGBoost和QRLSTM的超短期负荷预测方法[J].计算机仿真,2022,39(1):90-95.
[11] 袁莉芬,李松,尹柏强,等.基于自适应快速S变换和XGBoost的心电信号精确快速分类方法[J/OL].(2022-07-22) [2022-09-11].http://kns.cnki.net/kcms/detail/11.4494.tn.20220721.1556.008.html.
[12] 廖彬,王志宁,李敏,等.融合XGBoost与SHAP模型的足球运动员身价预测及特征分析方法[J/OL].(2022-04-13) [2022-09-11].http://kns.cnki.net/kcms/detail/50.1075.tp.20220411.2010.002.html.
[13] 程楠楠.基于混合特征选择模型CatBoost-LightGBM的违约风险预测研究[J].现代信息科技,2021,5(14):116-120.
[14] LAI G K,CHANG W C,YANG Y M,et al.Modeling Long- and Short-term Temporal Patterns with Deep Neural Networks[C]// International ACM SIGIR Conference on Research and Development in Information Retrieval.Ann Arbor:ACM,2018:95-104.
[15] 甘昕艳,唐晓年.基于CNN的时序数据关联规则挖掘模型[J].计算机仿真,2021,38(3):282-285.
[16] WANG H Z,LEI Z X,ZHANG X,et al.A Review of Deep Learning for Renewable Energy Forecasting[J].Energy Conversion and Management,2019,198:111799.
[17] 王欢,李鹏,曹敏,等.基于CNN_BiLSTM的长短期电力负荷预测方法[J].计算机仿真,2022,39(3):96-103.
[18] SHI J H,YU J,YANG J K,et al.Time Series Surface Temperature Prediction Based on Cyclic Evolutionary Network Model for Complex Sea Area[J].Future Internet,2022,14(3):96-102.
[19] MESNER O C,SHALIZI C R.Conditional Mutual Information Estimation for Mixed,Discrete and Continuous Data[J].IEEE Transactions on Information Theory,2021,67(1):464-484.
基本信息:
DOI:
中图分类号:TP311.13;P457.3
引用信息:
[1]陈岚,张华琳,汪波等.基于XGBoost和改进LSTNet的气温预测设计[J].无线电工程,2023,53(03):591-600.
基金信息:
四川省教育厅科研资助项目(2019YFS0490); 四川省科学技术厅科技支撑计划重点资助项目(2018NZ0051)~~