nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 08, v.55 1703-1709
基于MBL-YOLOv8n模型的光伏缺陷检测
基金项目(Foundation): 四川省科技计划(2024NSFSC2040); 成都市技术创新研发项目(2024-YF05-01130-SN); 西南科技大学博士基金项目(23zx7136,23zx7135)~~
邮箱(Email):
DOI:
摘要:

光伏组件表面缺陷的高效检测是保障光伏系统可靠性的关键,现有方法在微小缺陷检测、复杂背景干扰抑制等方面存在显著挑战。为此,提出一种基于YOLOv8n改进的光伏缺陷检测模型MBL-YOLOv8n。该模型通过两模块优化策略提升性能。在Backbone中引入了C2f-MBConv模块,结合深度可分离卷积与挤压-激励(Squeeze-and-Excitation, SE)注意力机制,增强了对微小缺陷(如油墨点、微裂纹)的细粒度特征提取能力;引入大尺度选择性卷积核注意力(Large-scale Selective Convolutional Kernel Attention, LSK-Attention)机制,通过动态融合多尺度卷积核的特征响应,自适应调整感受野范围,显著提升了模型对低对比度缺陷的敏感性与复杂背景的鲁棒性。在自制的光伏组件数据集上的实验结果表明,与原始的YOLOv8n相比,所提出的MBL-YOLOv8n模型在各项指标上取得了良好的提升,将mAP50提高了2%,召回率和精度分别提升了1.8%和2.5%。MBL-YOLOv8n模型在光伏组件缺陷检测中展现出较好的精度,为光伏产业智能化质检提供了有效的解决方案。

Abstract:

Efficient detection of surface defects on PV modules is crucial for ensuring the reliability of PV systems, however, existing methods still face significant challenges in the detection of tiny defects and the suppression of complex background interference. To address this, an improved PV defect detection model MBL-YOLOv8n based on YOLOv8n is proposed, which improves the performance through a two-module optimization strategy. Firstly, a C2f-MBConv module is introduced in Backbone, which combines depth-separable convolution with the Squeeze-and-Excitation(SE) attention mechanism to enhance the fine-grained feature extraction capability for tiny defects(e.g. ink dots, micro-cracks). Then, the Large-Scale Selective Convolutional Kernel Attention(LSK-Attention) mechanism is introduced, which dynamically fuses the feature responses of multi-scale convolution kernels to adaptively adjust the range of receptive field. This significantly improves the model's sensitivity to low-contrast defects and its robustness to complex backgrounds. The experimental results on the self-made PV module dataset show that, compared with the original YOLOv8n, the proposed MBL-YOLOv8n model achieves good improvement across all indexes. The mAP50 is improved by 2%, and the recall and precision by 1.8% and 2.5%, respectively. The MBL-YOLOv8n model demonstrates a better precision in defect detection of PV modules, and provides an effective solution for intelligent quality inspection in PV industry.

参考文献

[1] 张伟,李明,王强.光伏组件缺陷检测技术综述[J].太阳能学报,2020,41(5):123-130.

[2] 刘颖韬,许路路,何方成,等.环境因素对闪光灯激励红外热成像外场检测的影响[J].红外与激光工程,2021,50(12):380-387.

[3] TORRACA P L,CAEUSO F,PADOVANI A,et al.Extraction of Defects Properties in Dielectric Materials from I-V Curve Hysteresis[J].IEEE Electorn Device Letters,2021,42(2):220-223.

[4] 赖天舒,刘怀广,汤勃,等.多特征融合的太阳能电池片缺陷检测[J].应用光学,2023,44(3):605-613.

[5] REDMOM J,FARHADI A.YOLOv3:An Incremental Improvement[EB/OL].(2018-04-08)[2025-06-21].https://arxiv.org/abs/1804.02767.

[6] LIU W,ANGUELOV D,ERHAN D.SSD:Single Shot MultiBox Detector[C]//14th European Conference on Computer Vision.Amsterdam:Springer,2016:21-37.

[7] LIN T Y,GOYAL P,GIRSHICK R.Focal Loss for Dense Object Detection[C]//2017 IEEE International Conference on Computer Vision (ICCV).Venice:IEEE,2017:2990-3007.

[8] GIRSHICK R,DONAHUE J,DAEELL T.Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Columbus:IEEE,2014:580-587.

[9] 王道累,李明山,姚勇,等.改进SSD的光伏组件热斑缺陷检测方法[J].太阳能学报,2023,44(4):420-425.

[10] 孙建波,王丽杰,麻吉辉,等.基于改进YOLO v5s算法的光伏组件故障检测[J].红外技术,2023,45(2):202-208.

[11] 郭岚,刘正新.基于改进YOLOv5的光伏组件缺陷检测[J].激光与光电子学进展,2023,60(20):148-156.

[12] HU J,SHEN L,SUN G.Squeeze-and-Excitation Networks[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Salt Lake City:IEEE,2018:7132-7141.

[13] 陈子璇,陈辉.基于改进YOLOv5s的轻量级光伏板缺陷检测网络[J].山东理工大学学报(自然科学版),2025,39(3):70-78.

[14] LI Y X,HOU Q B,ZHENG Z H,et al.LSKNet:Large Selective Kernel Network for Remote Sensing Object Detecction[C]//2023 IEEE/CVF International Conference on Computer Vision.Paris:IEEE,2023:2456-2468.

[15] WANG C Y,LIAO H Y M,WU Y H.CSPNet:A New Backbone that Can Enhance Learning Capability of CNN[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Seattle:IEEE,2020:1571-1580.

[16] TAN M X,LE Q V.EfficientNet:Rethinking Model Scaling for Convolutional Neural Networks[EB/OL].(2019-05-28)[2025-06-21].https://arxiv.org/abs/1905.11946.

[17] VASWANI A,SHAZEER N,PARMAR N.Attention Is All You Need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems.Long Beach:Curran Associates Inc.,2017:6000-6010.

[18] 张亚军,张涛,李峰,等.基于CSI的时顿多尺度融合的双人动作识别方法[J/OL].无线电工程,1-15[2025-06-21].https://kns.cnki.net/kcms/detail/13.1097.TN.20250619.1608.002.html.

[19] LI C Y,LI L L,JIANG H L.YOLOv6:A Single-stage Object Detection Framework for Industrial Applications[EB/OL].(2022-09-07)[2025-06-21].https://arxiv.org/abs/2209.02976.

[20] WANG C Y,YEH I H,LIAO H Y M.YOLOv9:Learning What You Want to Learn Using Programmable Gradient Information[EB/OL].(2024-02-21)[2025-06-21].https://arxiv.org/abs/2402.13616.

[21] 王恒涛,张上,张朝阳,等.基于YOLOv5的轻量化PCB缺陷检测[J].无线电工程,2022,52(11):2094-2100.

[22] Ultralytics.YOLOv11:The Latest Evolution in the YOLO Series[EB/OL].[2025-06-21].https://docs.ultralytics.com/.

[23] TIAN Y J,YE Q X,DOERMANN D.YOLOv12:Attention-centric Centric Real-time Object Detectors[EB/OL].(2025-02-18)[2025-06-21].https://arxiv.org/abs/25.02.12524.

[24] 程换新,乔庆元,骆晓玲,等.基于改进YOLOv8的无人机航拍图像目标检测算法[J].无线电工程,2024,54(4):871-881.

基本信息:

DOI:

中图分类号:TM615;TP391.41

引用信息:

[1]马艺嘉,卢睿智,付可欣等.基于MBL-YOLOv8n模型的光伏缺陷检测[J].无线电工程,2025,55(08):1703-1709.

基金信息:

四川省科技计划(2024NSFSC2040); 成都市技术创新研发项目(2024-YF05-01130-SN); 西南科技大学博士基金项目(23zx7136,23zx7135)~~

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文