nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 11, v.54 2672-2684
无人机射频指纹识别方法综述
基金项目(Foundation): 四川省国际科技创新合作/港澳台科技创新合作项目(2023YFH0092); 四川省区域创新合作项目(2022YFQ0017); 国家自然科学基金(62172060)~~
邮箱(Email):
DOI:
摘要:

近年来,无人机在各个领域得到广泛应用,但越来越多的无人机也带来了一系列隐私和安全问题。因此,对无人机的检测和管理变得至关重要,目前通过射频指纹识别无人机的方法取得了较大进展。在结合国内外大量研究成果的基础上,对无人机射频指纹系统的各个步骤进行深入探讨。分析了各种无人机识别技术的优缺点,并详细阐述了无人机通信方式和射频指纹的形成机理与特性。根据信号收集、预处理、特征提取和分类识别4个阶段,对无人机射频指纹系统的相关技术进行了系统梳理,讨论了无人机射频指纹系统性能评估方法。对当前无人机射频指纹研究现状进行了问题分析与展望,包括射频指纹数据集缺乏、射频指纹稳定性、射频指纹的唯一性以及深度学习在射频指纹应用领域的探索,并进行了全文总结。

Abstract:

In recent years, drones have been widely used in various fields, but the increasing drones also brings a series of privacy and security issues. Therefore, the detection and management of drones has become very important, and the method of identifying drones through radio frequency fingerprints has made great progress. On the basis of a large number of research results at home and abroad, the various steps of the UAV radio frequency fingerprint system are discussed in depth. Firstly, the advantages and disadvantages of various UAV identification technologies are analyzed, and the communication mode of UAVs and the formation mechanism and characteristics of radio frequency fingerprints are elaborated. Then, according to the four stages of signal collection, preprocessing, feature extraction and classification recognition, the related technologies of the UAV radio frequency fingerprint system are systematically sorted out, and the performance evaluation method of the UAV radio frequency fingerprint system is briefly discussed. The current situation of UAV radio frequency fingerprint research is analyzed and prospected, including the lack of RF fingerprint datasets, the stability of radio frequency fingerprints, the uniqueness of radio frequency fingerprints, and the exploration of deep learning in the field of radio frequency fingerpri nt applications. Finally, a full-text summary is given.

参考文献

[1] HUYNH-THE T,PHAM Q V,NGUYEN T V,et al.RF-UAVNet:High-performance Convolutional Network for RF-based Drone Surveillance Systems[J].IEEE Access,2022,10:49696-49707.

[2] INANI K N,SANGWAN K S,DHIRA J.Machine Learning Based Framework for Drone Detection and Identification Using RF Signals[C]//2023 4th International Conference on Innovative Trends in Information Technology (ICITIIT).Kottayam:IEEE,2023:1-8.

[3] MEDAIYESE O O,SYED A,LAUF A P.Machine Learning Framework for RF-based Drone Detection and Identification System[C]//2021 2nd International Conference on Smart Cities,Automation & Intelligent Computing Systems (ICON-SONICS).Tangerang:IEEE,2021:58-64.

[4] LIEW C F,YAIRI T.Companion Unmanned Aerial Vehicles:A Survey[EB/OL].(2020-01-14)[2023-06-22].https://arxiv.org/abs/2001.04637.

[5] CHEN Y F,ZHU L,YAO C H,et al.Global Context-based Threshold Strategy for Drone Identification Under the Low SNR Condition[J].IEEE Internet of Things Journal,2023,10(2):1332-1346.

[6] JIAN M,LU Z Z,CHEN V C.Drone Detection and Tracking Based on Phase-interferometric Doppler Radar[C]//2018 IEEE Radar Conference (RadarConf18).Oklahoma City:IEEE,2018:1146-1149.

[7] TIWARI R,DUBEY A K.Detection of Camouflaged Drones Using Computer Vision and Deep Learning Techniques[C]//2022 12th International Conference on Cloud Computing,Data Science & Engineering (Confluence).Noida:IEEE,2022:380-383.

[8] JEON S,SHIN J W,LEE Y J,et al.Empirical Study of Drone Sound Detection in Real-life Environment with Deep Neural Networks[C]//2017 25th European Signal Processing Conference (EUSIPCO).Kos:IEEE,2017:1858-1862.

[9] GUVENC I,KOOHIFAR F,SINGH S,et al.Detection,Tracking,and Interdiction for Amateur Drones[J].IEEE Communications Magazine,2018,56(4):75-81.

[10] SADOVSKIS J,ABOLTINS A.Modern Methods for UAV Detection,Classification,and Tracking[C]//2022 IEEE 63th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON).Riga:IEEE,2022:1-7.

[11] JURN Y N,MAHMOOD S A,ALDHAIBANI J A.Anti-drone System Based Different Technologies:Architecture,Threats and Challenges[C]//2021 11th IEEE International Conference on Control System,Computing and Engineering (ICCSCE).Penang:IEEE,2021:114-119.

[12] CAI Z R,LIU Z Y,KOU L.Reliable UAV Monitoring System Using Deep Learning Approaches[J].IEEE Transactions on Reliability,2022,71(2):973-983.

[13] 陈翔,汪连栋,许雄,等.基于Raw I/Q和深度学习的射频指纹识别方法综述[J].雷达学报,2023,12(1):214-234.

[14] 曾勇虎,陈翔,林云,等.射频指纹识别的研究现状及趋势[J].电波科学学报,2020,35(3):305-315.

[15] 张振,贾济铖,康健,等.射频指纹识别技术方法综述[J].无线电通信技术,2021,47(3):249-258.

[16] EZUMA M,ERDEN F,ANJINAPPA C K,et al.Detection and Classification of UAVs Using RF Fingerprints in the Presence of Wi-Fi and Bluetooth Interference[J].IEEE Open Journal of the Communications Society,2020,1:60-76.

[17] SOLTANIEH N,NOROUZI Y,YANG Y,et al.A Review of Radio Frequency Fingerprinting Techniques[J].IEEE Journal of Radio Frequency Identification,2020,4(3):222-233.

[18] BASAK S,RAJENDRAN S,POLLIN S,et al.Drone Classification from RF Fingerprints Using Deep Residual Nets[C]//2021 International Conference on COMmunication Systems & NETworkS (COMSNETS).Bangalore:IEEE,2021:548-555.

[19] ZUO M,XIE S G,ZHANG X,et al.Recognition of UAV Video Signal Using RF Fingerprints in the Presence of WiFi Interference[J].IEEE Access,2021,9:88844-88851.

[20] XU C T,CHEN B W,LIU Y X,et al.RF Fingerprint Measurement for Detecting Multiple Amateur Drones Based on STFT and Feature Reduction[C]//2020 Integrated Communications Navigation and Surveillance Conference (ICNS).Herndon:IEEE,2020:4G1-1-4G1-7.

[21] GU J,SOLTANI N,NADERI M Y,et al.It’s a Bird,It’s a Plane,It’s “That” UAV:RF Fingerprinting During Flight[C]//2021 55th Asilomar Conference on Signals,Systems,and Computers.Pacific Grove:IEEE,2021:300-304.

[22] NIE W,HAN Z C,ZHOU M,et al.UAV Detection and Identification Based on WiFi Signal and RF Fingerprint[J].IEEE Sensors Journal,2021,21(12):13540-13550.

[23] NIE W,HAN Z C,LI Y,et al.UAV Detection and Localization Based on Multi-dimensional Signal Features[J].IEEE Sensors Journal,2022,22(6):5150-5162.

[24] MEDAIYESE O O,EZUMA M,LAUF A P,et al.Hierarchical Learning Framework for UAV Detection and Identification[J].IEEE Journal of Radio Frequency Identification,2022,6:176-188.

[25] SOLTANI N,REUS-MUNS G,SALEHI B,et al.RF Fingerprinting Unmanned Aerial Vehicles with Non-standard Transmitter Waveforms[J].IEEE Transactions on Vehicular Technology,2020,69(12):15518-15531.

[26] AL-SA’D M F,AL-ALI A,MOHAMED A,et al.RF-based Drone Detection and Identification Using Deep Learning Approaches:An Initiative Towards a Large Open Source Drone Database[J].Future Generation Computer Systems,2019,100:86-97.

[27] EZUMA M,ERDEN F,ANJINAPPA C K,et al.Micro-UAV Detection and Classification from RF Fingerprints Using Machine Learning Techniques[C]//2019 IEEE Aerospace Conference.Big Sky:IEEE,2019:1-13.

[28] MEDAIYESE O O,EZUMA M,LAUF A P,et al.Semi-supervised Learning Framework for UAV Detection[C]//2021 IEEE 32nd Annual International Symposium on Personal,Indoor and Mobile Radio Communications (PIMRC).Helsinki:IEEE,2021:1185-1190.

[29] BREMNES K,MOEN R,YEDURI S R,et al.Classification of UAVs Utilizing Fixed Boundary Empirical Wavelet Sub-bands of RF Fingerprints and Deep Convolutional Neural Network[J].IEEE Sensors Journal,2022,22(21):21248-21256.

[30] GE C H,YANG S B,SUN W J,et al.For RF Signal-based UAV States Recognition,Is Pre-processing Still Important at the Era of Deep Learning?[C]//2021 7th International Conference on Computer and Communications (ICCC).Chengdu:IEEE,2021:2292-2296.

[31] ZHANG J B,WANG Q W,GUO X C,et al.Radio Frequency Fingerprint Identification Based on Logarithmic Power Cosine Spectrum[J].IEEE Access,2022,10:79165-79179.

[32] XU C T,HE F Y,CHEN B W,et al.Adaptive RF Fingerprint Decomposition in Micro UAV Detection Based on Machine Learning[C]//ICASSP 2021-2021 IEEE International Conference on Acoustics,Speech and Signal Processing (ICASSP).Toronto:IEEE,2021:7968-7972.

[33] LI T T,HONG Z,CAI Q M,et al.BisSiam:Bispectrum Siamese Network Based Contrastive Learning for UAV Anomaly Detection[J].IEEE Transactions on Knowledge and Data Engineering,2021,35(12):12109-12124.

[34] LI C Q,WANG J M,WANG W Y,et al.RF-based on Feature Fusion and Convolutional Neural Network Classification of UAVs[C]//2022 IEEE 8th International Conference on Computer and Communications (ICCC).Chengdu:IEEE,2022:1899-1904.

[35] LIANG H T,WANG R T,XU M,et al.Few-shot Learning UAV Recognition Methods Based on the Tri-residual Semantic Network[J].IEEE Communications Letters,2022,26(9):2072-2076.

[36] JAFARI H,BLASCH E,PHAM K,et al.Signature-aware RF Exploitation(SNARE) Fingerprinting Using Deep Learning to Identify UAVs[C]//2022 IEEE Aerospace Conference (AERO).Big Sky:IEEE,2022:1-12.

[37] ZHAO C D,SHI M X,CAI Z B,et al.Detection of Unmanned Aerial Vehicle Signal Based on Gaussian Mixture Model[C]//2017 12th International Conference on Computer Science and Education (ICCSE).Houston:IEEE,2017:289-293.

[38] MOHANTI S,SOLTANI N,SANKHE K,et al.AirID:Injecting a Custom RF Fingerprint for Enhanced UAV Identification Using Deep Learning[C]//GLOBECOM 2020-2020 IEEE Global Communications Conference.Taipei:IEEE,2020:1-6.

[39] ZHAO C D,CHEN C Y,CAI Z B,et al.Classification of Small UAVs Based on Auxiliary Classifier Wasserstein GANs[C]//2018 IEEE Global Communications Conference (GLOBECOM).Abu Dhabi:IEEE,2018:206-212.

[40] YAKKATI R R,GADE A,KODURUB H,et al.Classification of UAVs Using Time-frequency Analysis of Remote Control Signals and CNN[C]//2022 IEEE International Symposium on Smart Electronic Systems (iSES).Warangal:IEEE,2022:1-6.

[41] RAJENDRAN S,SUN Z,LIN F,et al.Injecting Reliable Radio Frequency Fingerprints Using Metasurface for the Internet of Things[J].IEEE Transactions on Information Forensics and Security,2021,16:1896-1911.

基本信息:

DOI:

中图分类号:TP391.44;V279

引用信息:

[1]王豪,罗俊松,王惠明等.无人机射频指纹识别方法综述[J].无线电工程,2024,54(11):2672-2684.

基金信息:

四川省国际科技创新合作/港澳台科技创新合作项目(2023YFH0092); 四川省区域创新合作项目(2022YFQ0017); 国家自然科学基金(62172060)~~

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文