nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 05, v.55 993-1003
低轨卫星定位中时变参数的最大似然估计方法
基金项目(Foundation): 国家自然科学基金(U21A20450)~~
邮箱(Email):
DOI:
摘要:

针对辐射源的低轨双星定位中,低轨卫星相对于辐射源的径向速度差值大、变化快,导致时频差定位参数时变而无法采用互模糊函数(Cross Ambiguity Function, CAF)法进行有效估计的问题,提出了一种用于低轨卫星时变定位参数估计的最大似然估计(Maximum Likelihood Estimation, MLE)方法。分析了由径向速度差引起的相对时间扩展(Relative Time Companding, RTC)和径向加速度差引起的相对频率扩展(Relative Frequency Companding, RFC)分别对CAF到达时间差(Time Difference of Arrival, TDOA)和到达频率差(Freguency Difference of Arrival, FDOA)方向相关峰造成的影响。利用时域分段的近似信号模型,提出了TDOA、径向速度差和径向加速度差估计的频域MLE算法,给出了在此模型下参数估计的克拉美罗下界(Cramer-Rao Lower Bound, CRLB)。为了降低MLE算法的计算复杂度,提出了一种通过频域共轭积矩阵对参数分维估计的快速算法。仿真结果表明,所提算法能有效补偿参数时变性造成的影响,参数估计精度逼近CRLB。

Abstract:

To solve the problem that the radial velocity difference of the low-orbit satellite relative to the radiation source is large and changes rapidly, which leads to the time-frequency difference positioning parameters and makes it impossible to use the Cross Ambiguity Function(CAF) to effectively estimate, a method of Maximum Likelihood Estimation(MLE) for estimating time-varying positioning parameters of low-orbit satellites is studied. The influences of Relative Time Companding(RTC) caused by radial velocity difference and Relative Frequency Companding(RFC) caused by radial acceleration difference on the CAF correlation peaks in the direction of Time Difference of Arrival(TDOA) and Frequency Difference of Arrival(FDOA) are analyzed. By using the approximate signal model with time-domain segmentation, a frequency-domain MLE algorithm for estimating TDOA, radial velocity difference and radial acceleration difference is proposed, and the Cramer-Rao Lower Bound(CRLB) for parameter estimation under this model is given. In order to reduce the computational complexity of MLE algorithm, a fast algorithm for parameter fractal dimension estimation by frequency-domain conjugate product matrix is proposed. Simulation results show that the proposed algorithm can effectively compensate the influence caused by parameter time variability, and the parameter estimation accuracy is close to CRLB.

参考文献

[1] TORRIERI D J.Statistical Theory of Passive Location Systems [J].IEEE Transactions on Aerospace and Electronic Systems,1984,AES-20(2):183-198.

[2] CHAN Y T,TOWERS J J.Passive Localization from Doppler-shifted Frequency Measurements [J].IEEE Transactions on Signal Processing,1992,40(10):2594-2598.

[3] HO K C,XU W W.An Accurate Algebraic Solution for Moving Source Location Using TDOA and FDOA Measurements [J].IEEE Transactions on Signal Processing,2004,52(9):2453-2463.

[4] YIN J H,WAN Q,YANG S W,et al.A Simple and Accurate TDOA-AOA Localization Method Using Two Stations [J].IEEE Signal Processing Letters,2016,23(1):144-148.

[5] 孙哲,霍立寰,柏如龙,等.基于多重广义Hough变换的多星时频差联合定位方法[J].无线电工程,2021,51(11):1284-1288.

[6] HO K C,LU X N,KOVAVISARUCH L.Source Localization Using TDOA and FDOA Measurements in the Presence of Receiver Location Errors:Analysis and Solution [J].IEEE Transactions on Signal Processing,2007,55(2):684-696.

[7] 朱伟强,黄培康,束锋,等.多星TDOA和FDOA联合定位精度分析[J].系统工程与电子技术,2009,31(12):2797-2800.

[8] YEREDOR A,ANGEL E.Joint TDOA and FDOA Estimation:A Conditional Bound and Its Use for Optimally Weighted Localization [J].IEEE Transactions on Signal Processing,2011,59(4):1612-1623.

[9] 徐海源,苏成晓,汪华兴.一种融合时差频差和测向的运动目标跟踪方法[J].电讯技术,2024,64(2):261-265.

[10] STEIN S.Algorithms for Ambiguity Function Processing [J].IEEE Transactions on Acoustics,Speech,and Signal Processing,1981,29(3):588-599.

[11] 王迪,骆盛,毛锦,等.Starlink卫星系统技术概要 [J].航天电子对抗,2020,36(5):51-56.

[12] 赵鹏.我国低轨卫星通信产业发展现状及趋势分析[J].卫星应用,2021(8):20-23.

[13] ULMAN R,GERANIOTIS E.Wideband TDOA/FDOA Processing Using Summation of Short-time CAF's [J].IEEE Transactions on Signal Processing,1999,47(12):3193-3200.

[14] 杨宇翔,夏畅雄,同武勤.高低轨双星定位中的时变时频差参数估计[J].信号处理,2012,28(10):1465-1474.

[15] 李振强,黄振,陈曦,等.时频差精度的时变性影响及补偿估计方法 [J].系统工程与电子技术,2016,38(3):481-486.

[16] 朱珍珍,刘丽.时变时/频差对长时相关积累的影响分析及补偿策略[J].宇航学报,2017,38(7):735-742.

[17] XIAO X B,GUO F C,FENG D W.Low-complexity Methods for Joint Delay and Doppler Estimation of Unknown Wideband Signals [J].IET Radar,Sonar & Navigation,2018,12(4):398-406.

[18] LIU Z X,WANG R,ZHAO Y J.Noise-resistant Estimation Algorithm for TDOA,FDOA and Differential Doppler Rate in Passive Sensing [J].Circuits,Systems,and Signal Processing,2020,39:4155-4173.

[19] PERRY R P,DIPIETRO R C,FANTE R L.SAR Imaging of Moving Targets [J].IEEE Transactions on Aerospace and Electronic Systems,1999,35(1):188-200.

[20] ZHU D Y,LI Y,ZHU Z D.A Keystone Transform Without Interpolation for SAR Ground Moving-target Imaging [J].IEEE Geoscience and Remote Sensing Letters,2007,4(1):18-22.

[21] WEISS L G.Wavelets and Wideband Correlation Processing [J].IEEE Signal Processing Magazine,1994,11(1):13-32.

[22] BETZ J.Effects of Uncompensated Relative Time Companding on a Broad-band Cross Correlator [J].IEEE Transactions on Acoustics,Speech,and Signal Processing,1985,33(3):505-510.

[23] WERNESS S A S,CARRARA W G,JOYCE L S,et al.Moving Target Imaging Algorithm for SAR Data [J].IEEE Transactions on Aerospace and Electronic Systems,1990,26(1):57-67.

基本信息:

DOI:

中图分类号:V249.3

引用信息:

[1]薛同鑫,屈德新,张更新.低轨卫星定位中时变参数的最大似然估计方法[J].无线电工程,2025,55(05):993-1003.

基金信息:

国家自然科学基金(U21A20450)~~

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文