98 | 0 | 15 |
下载次数 | 被引频次 | 阅读次数 |
为满足第六代移动通信(6G)的全球覆盖和高速率通信要求,已出现或将成形多个大规模低地球轨道(Low Earth Orbit, LEO)星座。而LEO极轨星座在中高纬度区域均存在严重的重叠覆盖问题,导致通信资源的浪费及系统间同频干扰。通过波束关闭(Beam Switch Off, BSO)策略关闭部分波束的方式,可以在减少波束重叠覆盖的同时节约卫星能量。针对同频干扰问题,需要对关闭波束的选择进行优化,提高产生干扰波束的被关闭权重。提出了一种使用深度强化学习(Deep Reinforcement Learning, DRL)进行参数优化的贪婪策略用于解决该问题。在搭载真实天线模型的铱星星座场景下,该算法关闭了37.4%的波束,将系统等效功率通量密度(Equivalent Power Flux Density, EPFD)降低至国际电信联盟(International Telecommunication Union, ITU)的限值要求,确保在98%的时间内在20 kHz的参考带宽下不超过-194 dB(W/m2),在进行BSO的同时有效减缓了系统间干扰。
Abstract:In order to meet the requirements for 6G global coverage and high-rate communications, several large-scale Low Earth Orbit(LEO) satellite constellations have emerged or will take shape. Among them, LEO polar orbit constellations have serious overlapping coverage problems in middle and high latitude regions. This leads to the waste of communication resources and inter-system co-channel interference. By implementing the Beam Switch Off(BSO) strategy to turn off certain beams, it is possible to reduce the overlapping coverage of beams and save satellite energy as well. Regarding the co-frequency interference, it is necessary to optimize the selection of beams to be deactivated, and increase the weight of the interfering beams to be deactivated. A Deep Reinforcement Learning(DRL) enhanced greedy strategy is proposed for this optimization problem. In the Iridium Next constellation scenario, a realistic antenna model is used. Simulation results show that the algorithm effectively deactivates 37.4% of the beams and reduces the system's Equivalent Power Flux Density(EPFD) to not more than-194 dB(W/m2) in 20 kHz reference bandwidth for at least 98% of the time, which meets the limit requirements of the International Telecommunication Union(ITU). While implementing BSO, the inter-system interference is effectively mitigated.
[1] LUO X W,CHEN H H,GUO Q.LEO/VLEO Satellite Communications in 6G and Beyond Networks-Technologies,Applications,and Challenges[J].IEEE Network,2024,38(5):273-285.
[2] 蒙艳松,边朗,王瑛,等.基于“鸿雁”星座的全球导航增强系统[J].国际太空,2018(10):20-27.
[3] 禹华钢,方子希.低轨卫星互联网:发展、应用及新技术展望[J].无线电工程,2023,53(11):2699-2707.
[4] PENG D Y,HE D X,LI Y,et al.Integrating Terrestrial and Satellite Multibeam Systems Toward 6G:Techniques and Challenges for Interference Mitigation[J].IEEE Wireless Communications,2022,29(1):24-31.
[5] ZHENG G,YAO Y P,HE D S,et al.Optimization Design of Global Low-orbit Satellite Constellation for Multi-fold Coverage[C]//2020 IEEE 3rd International Conference on Electronics and Communication Engineering (ICECE).Xi’an:IEEE,2020:1-5.
[6] 李辉,唐鼎昕.约束通信星座二十年的规则边界——EPFD简史[J].卫星与网络,2021(12):46-55.
[7] MUNIRA S,SAHA D,HELLBOURG G,et al.Dynamic Protection Zone for Radio Astronomy[C]//2024 IEEE International Symposium on Dynamic Spectrum Access Networks (Dyspan).Washington D.C.:IEEE,2024:556-560.
[8] GRIGG D,TINGAY S J,SOKOLOWSKI M,et al.Detection of Intended and Unintended Emissions from Starlink Satellites in the SKA-Low Frequency Range,at the SKA-Low Site,with an SKA-Low Station Analogue [J].Astronomy & Astrophysics,2023,678:202347654.
[9] TATUM P.Interference Mitigation for a Satellite Network:US201816207489 [P].2017-06-07.
[10] LIU S J,LIN J K,XU L X,et al.A Dynamic Beam Shut Off Algorithm for LEO Multibeam Satellite Constellation Network[J].IEEE Wireless Communications Letters,2020,9(10):1730-1733.
[11] GUPTA V K,AL-HRAISHAWI H,LAGUNAS E,et al.Traffic-aware Satellite Switch-Off Technique for LEO Constellations[C]//2022 IEEE Globecom Workshops (GC Wkshps).Rio De Janeiro:IEEE,2022:880-885.
[12] HIDAYATI R,SUTYARJOKO M,WIJANTO H.Compliance of Non-GSO Satellite with Radio Regulations Regarding to Interference with GSO Earth Stations.Case Study:Starlink and Telkom 3S[C]//2024 8th International Conference on Information Technology,Information Systems and Electrical Engineering (ICITISEE).Yogyakarta:IEEE,2024:574-579.
[13] HARTMAN T,MOONEN N,LEFERINK F.RFI Estimation from Non-GSO Satellites Based on Two Line Element Assisted Equivalent Power Flux Density Calculations[C]//2018 International Symposium on Electromagnetic Compatibility (EMC EUROPE).Amsterdam:IEEE,2018:17-21.
[14] HILLS A,PEHA J M,MUNK J,et al.Controlling Antenna Sidelobe Radiation to Mitigate Ku-band LEO-to-GEO Satellite Interference[J].IEEE Access,2023,11:71154-71163.
[15] ITU.Interference Calculations Between Non-geostationary Mobile-satellite Service or Radionavigation-satellite Service Systems and Radio Astronomy Telescope Sites:ITU-R M.1583-1[S].Geneva:ITU,2007.
[16] 刘文文,熊伟,韩驰,等.静止轨道通信卫星资源调度模型与算法研究[J].无线电工程,2022,52(7):1172-1179.
[17] 刘孝凡.基于启发式算法的部分集合覆盖问题求解[D].长春:东北师范大学,2022.
[18] WANG H N,LIU L X,ZHOU X,et al.Deep Reinforcement Learning Based Interference Avoidance Beam-hopping Allocation Algorithm in Multi-beam Satellite Systems[C]//2023 IEEE 22nd International Conference on Trust,Security and Privacy in Computing and Communications (Trustcom).Exeter:IEEE,2023:1966-1973.
[19] TATHE P K,SHARMA M.Dynamic Actor-Critic:Reinforcement Learning Based Radio Resource Scheduling for LTE-advanced[C]//2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA).Pune:IEEE,2018:1-4.
[20] TAN Z Z,QIN H L,CONG L,et al.New Method for Positioning Using IRIDIUM Satellite Signals of Opportunity[J].IEEE Access,2019,7:83412-83423.
[21] ITU.Protection Criteria Used for Radio Astronomical Measurements:ITU-R RA.769[S].Geneva:ITU,2003.
[22] ITU.Reference Radio Astronomy Antenna Pattern to Be Used for Compatibility Analyses Between Non-GSO Systems and Radio Astronomy Service Stations Based on the EPFD Concept ITU-R RA.1631[S].Geneva:ITU,2003.
基本信息:
DOI:
中图分类号:TP18;TN975;TN927.2
引用信息:
[1]袁书豪,尹良.基于改进贪婪策略的NGSO干扰减缓方法[J].无线电工程,2025,55(04):891-897.
基金信息: