211 | 2 | 16 |
下载次数 | 被引频次 | 阅读次数 |
近年来,可重构智能表面(Reconfigurable Intelligent Surface, RIS)因其能够智能控制无线信道的能力而被认为是未来6G发展中至关重要的新技术之一。为了克服“乘性衰落”的影响,有源可重构智能表面(Active Reconfigurable Intelligent Surface, ARIS)被提出。但在一些通信质量较差的通信场景中,单个ARIS所带来的增益还不够。对由多个ARIS辅助的通信系统的性能进行了分析。多个ARIS的引入在对入射信号进行放大的同时也对RIS相关噪声进行了放大,为了解决多用户的和速率最大化问题,采用分式规划理论中的拉格朗日对偶变换和二次变换以及交替优化算法在基站和ARIS的功率约束下对基站处预编码矩阵和ARIS反射系数矩阵进行了联合优化。仿真结果表明,由多ARIS辅助的通信系统能够比由多无源RIS辅助的通信系统和单ARIS辅助的通信系统得到更大的和速率。
Abstract:In recent years, Reconfigurable Intelligent Surface(RIS) is considered as one of the most important new technologies in the future development of 6G due to its ability to intelligently control wireless channels. In order to overcome the influence of “multiplicative fading”, Active Reconfigurable Intelligent Surface(ARIS) is proposed. However, in some communication scenarios with poor communication quality, the gain brought by a single ARIS is not enough. Therefore, the performance of multiple ARIS-assisted communication systems is analyzed. The introduction of multiple ARIS not only amplifies the incident signal, but also amplifies the RIS related noise. In order to solve the problem of multi-user sum rate maximization, Lagrangian dual transformation, quadratic transformation and alternative optimization algorithm in fractional programming theory are used to jointly optimize the precoding matrix and ARIS reflection coefficient matrix at the base station under the power constraints of the base station and ARIS. The simulation results show that multiple ARIS assisted communication system can achieve higher sum rate than multiple passive RIS assisted communication system and single ARIS assisted communication system.
[1] DI RENZO M,ZAPPONE A,DEBBAH M,et al.Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces:How It Works,State of Research,and the Road Ahead[J].IEEE Journal on Selected Areas in Communications,2020,38(11):2450-2525.
[2] WU Q Q,ZHANG R.Towards Smart and Reconfigurable Environment:Intelligent Reflecting Surface Aided Wireless Network[J].IEEE Communications Magazine,2020,58(1):106-112.
[3] WU Q Q,ZHANG R.Intelligent Reflecting Surface Enhanced Wireless Network via Joint Active and Passive Beamforming[J].IEEE Transactions on Wireless Communications,2019,18(11):5394-5409.
[4] WU Q Q,ZHANG S W,ZHENG B X,et al.Intelligent Reflecting Surface-aided Wireless Communications:A Tutorial[J].IEEE Transactions on Communications,2021,69(5):3313-3351.
[5] LIU K Z,ZHANG Z J,DAI L L,et al.Active Reconfigurable Intelligent Surface:Fully-connected or Sub-connected?[J].IEEE Communications Letters,2022,26(1):167-171.
[6] ZHANG Z J,DAI L L,CHEN X B,et al.Active RIS vs.Passive RIS:Which Will Prevail in 6G?[J/OL].(2021-03-28)[2022-12-15].https://doi.org/10.48550/arXiv.2103.15154.
[7] BASAR E,DI RENZO M,DE ROSNY J,et al.Wireless Communications Through Reconfigurable Intelligent Surfaces[J].IEEE Access,2019,7:116753-116773.
[8] LONG R Z,LIANG Y C,PEI Y Y,et al.Active Reconfi-gurable Intelligent Surface-aided Wireless Communications[J].IEEE Transactions on Wireless Communications,2021,20(8):4962-4975.
[9] BASAR E,POOR H.V.Present and Future of Reconfigurable Intelligent Surface-empowered Communications [Perspectives] [J].IEEE Signal Processing Magazine,2021,38(6):146-152.
[10] MA Y N,LI M,LIU Y,et al.Active Reconfigurable Intelligent Surface for Energy Efficiency in MU-MISO Systems[J].IEEE Transactions on Vehicular Technology,2023,72(3):4103-4107.
[11] DONG L M,WANG H M,BAI J L.Active Reconfigurable Intelligent Surface Aided Secure Transmission[J].IEEE Transactions on Vehicular Technology,2022,71(2):2181-2186.
[12] GAO Y,WU Q Q,ZHANG G C,et al.Beamforming Optimization for Active Intelligent Reflecting Surface-aided SWIPT[J].IEEE Transactions on Wireless Communications,2022,22(1):362-378.
[13] CHEN L Q,CHUNG K L,LAI G M,et al.Cross Deployment of Active and Passive Reconfigurable Intelligent Surfaces (RISs) for Next-generation Communications[C]//2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT).Hefei:IEEE,2022:829-831.
[14] 陈迎新,岳殿武,任静,等.多可重构智能表面辅助通信系统的性能研究[J].无线电工程,2022,52(12):2124-2131.
[15] 李中捷,熊吉源,高伟,等.分布式IRS辅助毫米波MU-MISO系统联合波束成形设计[J].通信学报,2022,43(4):216-226.
[16] 任静,岳殿武,陈迎新,等.RIS选优辅助的协作中继通信系统性能研究[J].无线电工程,2022,52(12):2156-2162.
[17] SHEN K M,YU W.Fractional Programming for Communication Systems—Part I:Power Control and Beamforming[J].IEEE Transactions on Signal Processing,2018,66(10):2616-2630.
[18] GRANT M,BOYD S.CVX:Matlab Software for Disciplined Convex Programming[EB/OL].(2022-01-31)[2022-12-15].http://cvxr.com/cvx.
基本信息:
DOI:
中图分类号:TN929.5
引用信息:
[1]王继龙,岳殿武,贾瑞霞等.多有源可重构智能表面辅助通信系统的和速率优化研究[J].无线电工程,2023,53(12):2805-2810.
基金信息:
国家自然科学基金(61971081)~~