589 | 0 | 33 |
下载次数 | 被引频次 | 阅读次数 |
水下建筑物结构老化等缺陷使水电站运行存在巨大的安全风险。水下建筑物图像作为运维人员了解水下情况的主要来源,在水下缺陷检测中发挥着重要作用。针对水电站水下建筑物图像模糊、颜色失真导致的缺陷检测困难等问题,提出一种基于改进直方图校正和模糊估计(Improve Histogram Correction and Fuzzy Estimation, IHCFE)的多层次水下图像增强算法。该算法利用粒子群算法(Particle Swarm Optimization, PSO)自适应确定裁剪因子,并得到自适应对比度增强图像;进而利用IBLA算法解决图像颜色失真问题,得到颜色还原后图像;再以拉普拉斯金字塔对上述图像逐层分解融合,得到多尺度融合图像。将原图、限制对比度自适应直方图均衡化(Contrast Limit Adaptive Histogram Equalization, CLAHE)、综合色彩模型(Integrated Color Model, ICM)、水下图像增强卷积神经网络模型(Convolutional Neural Network Model for Underwater Image Enhancement, UWCNN)和所提算法增强后图像输入Fast RCNN中验证目标检测性能,所提算法拥有最高的目标检测准确率,说明了增强算法的有效性和优越性。
Abstract:Defects such as structural deterioration of underwater buildings pose significant safety risks to the operation of hydropower plants. As the main source for operation and maintenance personnel to understand the underwater situation, underwater building images play an important role in the detection of underwater defects. To tackle the problems of defect detection difficulties caused by blurring and colour distortion of underwater building images of hydropower stations, a multilevel underwater image enhancement algorithm based on Improve Histogram Correction and Fuzzy Estimation( IHCFE) is proposed. The Particle Swarm Optimization( PSO) algorithm is used to adaptively determine the cropping factor to obtain an adaptive contrast-enhanced image.Furthermore, the IBLA algorithm is employed to address the problem of color distortion in the image, subsequently yielding an image with corrected colors; Then, the Laplacian pyramid is used to decompose and fuse the above images layer by layer to obtain a multiscale fused image; The original image, Contrast Limit Adaptive Histogram Equalization( CLAHE), Integrated Color Model( ICM),Convolutional Neural Network Model for Underwater Image Enhancement( UWCNN) and the enhanced image of the proposed algorithm are input into Fast RCNN to verify the object detection performance. The proposed algorithm has achieved the highest object detection accuracy, demonstrating the effectiveness and superiority of the proposed enhancement algorithm.
[1]杨威,刘志强,叶嘉辉,等.基于图像融合的水下桥墩裂纹图像增强方法[J/OL].光电子·激光,1-10[2024-05-24]. http:∥kns. cnki. net/kcms/detail/12. 1182. O4.20240321. 1614. 040. html.
[2]陈鑫,钱旭,周佳加,等.基于水下场景先验的水下图像增强方法研究[J].应用科技,2024,51(2):56-65.
[3]唐军,秦艳霞,林玲,等.多尺度融合与细节突显的水下视觉图像增强算法[J/OL].机械科学与技术,1-8[2024-04-24]. https:∥doi. org/10. 13433/j. cnki.1003-8728. 20240044.
[4] PENG Y T,COSMAN P C. Underwater Image Restoration Based on Image Blurriness and Light Absorption[J].IEEE Transactions on Image Processing,2017,26(4):1579-1594.
[5] SONG W,WANG Y,HUANG D M. A Rapid Scene Depth Estimation Model Based on Underwater Light Attenuation Prior for Underwater Image Restoration[C]∥Advances in Multimedia Information Processing. Hefei:Springer,2018:678-688.
[6] LIN S J,LI Z,ZHENG F H,et al. Underwater Image Enhancement Based on Adaptive Color Correction and Improved Retinex Algorithm[J]. IEEE Access,2023,11:27620-27630.
[7]王悦,范慧杰,刘世本,等.基于多尺度注意力和对比学习的水下图像增强[J].激光与光电子学进展,2024,61(4):559-567.
[8]张文淇,张浩,牛志杰,等.一种基于改进Shallow-UWnet的浑浊水体图像增强方法[J/OL].光电子·激光,1-10[2024-04-24]. http:∥kns. cnki. net/kcms/detail/12. 1182. O4. 20240321. 1604. 028. html.
[9]张宏韬,唐芳,吴坤,等.基于粒子群优化BP神经网络的激光扫描投影系统畸变预测方法[J].光子学报,2024,53(6):282-293.
[10]鲍薇,燕跃豪,王爽,等.基于粒子群优化神经网络的变压器故障诊断方法[J].自动化应用,2024,65(10):95-98.
[11]施丽红.自适应直方图均衡化的合成孔径雷达图像增强[J].无线电工程,2021,51(9):921-926.
[12]林森,查子月.结合色彩补偿与双背景光融合的水下图像复原[J].光学精密工程,2024,32(7):1059-1074.
[13]周辉奎,章立,胡素娟.改进直方图匹配和自适应均衡的水下图像增强[J].红外技术,2024,46(5):532-538.
[14]弭永发,迟明善,张强,等.基于颜色校正与改进的CLAHE多尺度融合水下图像增强[J].无线电工程,2024,54(6):1470-1480.
[15]吴清平.基于衰减补偿与反转CLAHE的水下图像增强算法[J].电脑编程技巧与维护,2023(12):136-139.
[16]陈祖国,李俊杰,卢明,等.基于自适应色彩均衡及改进IBLA的水下图像增强[J].电光与控制,2024,31(2):118-124.
[17]欧阳,黄建峰,袁容.基于深度多先验学习的水下图像增强模型[J/OL].激光与光电子学进展,1-6[2024-05-20]. https:∥link. cnki. net/urlid/31. 1690. tn.20240422. 1744. 136.
[18] LIU R S, FAN X, ZHU M. Real-world Underwater Enhancement:Challenges,Benchmarks,and Solutions Under Natural Light[J]. IEEE Transactions on Circuits and Systems for Video Technology,2020,30(12):4861-4875.
[19]刘真,高秀晶,洪汉池.基于灰度世界和门控聚合网络的水下图像增强[J].厦门理工学院学报,2024,32(1):67-75.
[20]梁秀满,赵治刚,于海峰,等.基于颜色线模型和多尺度融合的水下图像增强[J].控制与决策,2025,40(1):162-169.
基本信息:
DOI:
中图分类号:TV698;TP391.41
引用信息:
[1]张福林,何云,彭望等.基于改进直方图和模糊估计的多层次水下图像增强方法[J].无线电工程,2025,55(03):540-547.
基金信息:
国家能源集团江西电力有限公司科技创新项目资助(CEZB230604485)~~