nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2025 04 v.55 714-725
面向通信感知一体化的仿射频分复用技术综述
基金项目(Foundation): 国家自然科学基金(62271368,62371367); 陕西省重点研发计划(2023-ZDLGY-50); 中央高校基本科研业务费(QTZX23066)~~
邮箱(Email):
DOI:
中文作者单位:

西安电子科技大学通信工程学院;西安电子科技大学空天地一体化综合业务网全国重点实验室;

摘要(Abstract):

6G移动通信系统中,通信和感知的深度融合尤为重要,对网络架构、组网技术以及空口能力等方面的原生通信感知融合设计提出了更高要求。其中,通信感知一体化(Integrated Sensing and Communication, ISAC)波形设计作为关键技术,有望实现高效率通信和高精度感知双重目标。6G系统预计将采用超高频(Extremely High Frequency, EHF)技术,特别是在毫米波和太赫兹频段,以支持低空经济、车联网(Vehicle to Everything, V2X)、高速铁路以及卫星通信等应用。这些场景通常处于异构和高速移动条件下,产生的双色散信道给无线通信系统带来了巨大挑战。最近提出的仿射频分复用(Affine Frequency Division Multiplexing, AFDM)技术通过在离散仿射傅里叶变换(Discrete Affine Fourier Transform, DAFT)域中对信息符号进行多路复用,使得所有的路径相互分离,每个符号都经历所有的路径系数,从而在双色散信道上实现完全分集。介绍了AFDM的基本理论,讨论了AFDM与其他潜在波形在ISAC系统中的性能差异,对AFDM在ISAC场景中的应用和未来研究方向进行了描述和展望。

关键词(KeyWords): 仿射频分复用;通信感知一体化;波形设计;6G
参考文献

[1] IMT-2030(6G)推进组.6G总体愿景与潜在关键技术白皮书[R].[2024-10-26].https://www.xdyanbao.com/doc/lpj8c1bemk?userid=57555079&bd_vid=9060111526116970470.

[2] RAPPAPORT T S,XING Y C,KANHERE O,et al.Wireless Communications and Applications Above 100 GHz:Opportunities and Challenges for 6G and Beyond[J].IEEE Access,2019,7:78729-78757.

[3] VO N S,DUONG T Q,SHENG Z C.The Key Trends in B5G Technologies,Services and Applications[J].Mobile Networks and Applications,2022,27(4):1716-1718.

[4] LI Z,MA Z G,LIANG Y P.Integrated Sensing and Communication Waveform Design in the Internet of Vehicles[J].Vehicular Communications,2023,44:100664.

[5] WYMEERSCH H,SECO-GRANADOS G,DESTINO G,et al.5G mmWave Positioning for Vehicular Networks[J].IEEE Wireless Communications,2017,24(6):80-86.

[6] TAN B,CHEN Q C,CHETTY K,et al.Exploiting WiFi Channel State Information for Residential Healthcare Informatics[J].IEEE Communications Magazine,2018,56(5):130-137.

[7] CUI Y H,LIU F,JING X J,et al.Integrating Sensing and Communications for Ubiquitous IoT:Applications,Trends,and Challenges[J].IEEE Network,2021,35(5):158-167.

[8] IMT-2030(6G)推进组.6G通信感知一体化空口关键技术研究报告[R].[2024-10-26].https://www.doc88.com/p-18668416391359.html.

[9] LIU F,MASOUROS C,PETROPULU A P,et al.Joint Radar and Communication Design:Applications,State-of-the-art,and the Road Ahead[J].IEEE Transactions on Communications,2020,68(6):3834-3862.

[10] ANDREWS J G,BUZZI S,CHOI W,et al.What Will 5G Be?[J].IEEE Journal on Selected Areas in Communications,2014,32(6):1065-1082.

[11] TANEJA A,ALHUDHAIF A,ALSUBAI S,et al.A Novel Multiple Access Scheme for 6G Assisted Massive Machine Type Communication[J].IEEE Access,2022,10:117638-117645.

[12] NOOR-A-RAHIM M,LIU Z L,LEE H,et al.6G for Vehicle-to-Everything (V2X) Communications:Enabling Technologies,Challenges,and Opportunities[J].Proceedings of the IEEE,2022,110(6):712-734.

[13] ZHONG Y,BI T Q,WANG J,et al.Empowering the V2X Network by Integrated Sensing and Communications:Background,Design,Advances,and Opportunities[J].IEEE Network,2022,36(4):54-60.

[14] WANG T J,PROAKIS J G,MASRY E,et al.Performance Degradation of OFDM Systems Due to Doppler Spreading[J].IEEE Transactions on Wireless Communications,2006,5(6):1422-1432.

[15] JADAV N K.A Survey on OFDM Interference Challenge to Improve its BER[C]//2018 Second International Conference on Electronics,Communication and Aerospace Technology (ICECA).Coimbatore:IEEE,2018:1052-1058.

[16] CHEN X,FENG Z Y,WEI Z Q,et al.Code-division OFDM Joint Communication and Sensing System for 6G Machine-type Communication[J].IEEE Internet of Things Journal,2021,8(15):12093-12105.

[17] WU K,ZHANG J A,HUANG X J,et al.Joint Communications and Sensing Employing Multi-or Single-carrier OFDM Communication Signals:A Tutorial on Sensing Methods,Recent Progress and a Novel Design[J].Sensors,2022,22(4):1613.

[18] OUYANG X,ZHAO J.Orthogonal Chirp Division Multiplexing[J].IEEE Transactions on Communications,2016,64(9):3946-3957.

[19] OMAR M S,MA X L.Performance Analysis of OCDM for Wireless Communications[J].IEEE Transactions on Wireless Communications,2021,20(7):4032-4043.

[20] HADANI R,RAKIB S,TSATSANIS M,et al.Orthogonal Time Frequency Space Modulation[C]//2017 IEEE Wireless Communications and Networking Conference (WCNC).San Francisco:IEEE,2017:1-6.

[21] WEI Z Q,YUAN W J,LI S Y,et al.Orthogonal Time-frequency Space Modulation:A Promising Next-generation Waveform[J].IEEE Wireless Communications,2021,28(4):136-144.

[22] BEMANI A,KSAIRI N,KOUNTOURIS M.Affine Frequency Division Multiplexing for Next Generation Wireless Communications[J].IEEE Transactions on Wireless Communications,2023,22(11):8214-8229.

[23] BEMANI A,KSAIRI N,KOUNTOURIS M.Integrated Sensing and Communications with Affine Frequency Division Multiplexing[J].IEEE Wireless Communications Letters,2024,13(5):1255-1259.

[24] NI Y H,WANG Z L,YUAN P,et al.An AFDM-based Integrated Sensing and Communications[C]//2022 International Symposium on Wireless Communication Systems (ISWCS).Hangzhou:IEEE,2022:1-6.

[25] ROU H S,DE ABREU G T F,CHOI J,et al.From OTFS to AFDM:A Comparative Study of Next-generation Waveforms for ISAC in Doubly-dispersive Channels[EB/OL].(2024-1-15)[2024-10-26].https://arxiv.org/abs/2401.07700.

[26] SURABHI G D,AUGUSTINE R M,CHOCKALINGAM A.On the Diversity of Uncoded OTFS Modulation in Doubly-dispersive Channels[J].IEEE Transactions on Wireless Communications,2019,18(6):3049-3063.

[27] 颜卫忠,陈栋志.线性调频连续波雷达目标参数测量[J].无线电工程,2021,51(2):129-133.

[28] 马立波,陈敬乔.一种适用于高动态的高精度频率估计方法[J].无线电工程,2021,51(2):168-172.

[29] YIN H R,TANG Y Q.Pilot Aided Channel Estimation for AFDM in Doubly Dispersive Channels[C]//2022 IEEE/CIC International Conference on Communications in China (ICCC).Sanshui:IEEE,2022:308-313.

[30] 黄高见,欧阳缮,廖可非.雷达通信一体化信号调制技术综述[J].无线电工程,2022,52 (3):336-349.

[31] STURM C,WIESBECK W.Waveform Design and Signal Processing Aspects for Fusion of Wireless Communications and Radar Sensing[J].Proceedings of the IEEE,2011,99(7):1236-1259.

[32] ZHANG D,ZHANG Y,GAO D,et al.Research on Integrated Sensing and Communications Based on OCDM[C]//IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium.Athens:IEEE,2024:6839-6842.

[33] GAUDIO L,KOBAYASHI M,CAIRE G,et al.On the Effectiveness of OTFS for Joint Radar Parameter Estimation and Communication[J].IEEE Transactions on Wireless Communications,2020,19(9):5951-5965.

[34] ZHU J J,TANG Y Q,LIU F,et al.AFDM-based Bistatic Integrated Sensing and Communication in Static Scatterer Environments[J].IEEE Wireless Communications Letters,2024,13(8):2245-2249.

[35] RANASINGHE K R R,ROU H S,DE ABREU G T F,et al.Joint Channel,Data and Radar Parameter Estimation for AFDM Systems in Doubly-dispersive Channels[J].IEEE Transactions on Wireless Communications,2024,24(2):1602-1619.

[36] PENG X.Security-enhanced AFDM Transmissions Using Integrated Sensing and Communication[EB/OL].(2024-09-15)[2024-10-26].https://openresearch.surrey.ac.uk/esploro/outputs/conferenceProceeding/Security-Enhanced-AFDM-Transmissions-Using-Integrated-Sensing/99925566002346.

[37] WANG Z L,LIU Y W,MU X D,et al.NOMA Empowered Integrated Sensing and Communication[J].IEEE Communications Letters,2022,26(3):677-681.

[38] 马启成,卢建斌.基于STBC 编码的 MIMO-CE-S16PSK-OFDM-LFM 雷达通信一体化波形设计[J].无线电工程,2022,52(3):358-367.

[39] 张静,张梦雨,王栋.估计大规模 MIMO-OFDM 稀疏随机信道的卡尔曼滤波[J].无线电工程,2022,52(6):925-931.

[40] LV L,XU D Y,HU R Q,et al.Safeguarding Next Generation Multiple Access Using Physical Layer Security Techniques:A Tutorial[J].Proceedings of the IEEE,2024,112(9):1421-1466.

基本信息:

DOI:

中图分类号:TN929.5

引用信息:

[1]李雨昂,丁昱翔,吕璐等.面向通信感知一体化的仿射频分复用技术综述[J].无线电工程,2025,55(04):714-725.

基金信息:

国家自然科学基金(62271368,62371367); 陕西省重点研发计划(2023-ZDLGY-50); 中央高校基本科研业务费(QTZX23066)~~

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文