nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2022, 03, v.52 456-462
基于卷积神经网络的无人机射频信号识别
基金项目(Foundation): 天津市电力公司科技项目(KJ21-1-7)~~
邮箱(Email):
DOI:
摘要:

针对在复杂电磁环境下无人机难以被检测的问题,提出了一种基于卷积神经网络的无人机射频信号识别方法。射频前端对目标空域内的无线电信号进行扫描,捕捉与拦截无人机自身发射的射频信号,将无人机射频信号进行预处理,送入构建的卷积神经网络进行分析与识别。实验结果表明,基于卷积神经网络的无人机射频信号识别方法在检测无人机是否存在、识别4种无人机型号、识别10种无人机运行模式上均有较好的检测效果,具有较强的鲁棒性和环境抗干扰能力。

Abstract:

In complex electromagnetic environment, it is difficult to detect unmanned aerial vehicle(UAV).To solve the problem, a method of UAV radio-frequency(RF) signal recognition based on convolutional neural network is proposed.The RF front-end scans the radio signals in the airspace, and then the RF signal from the UAV itself is captured and intercepted.Finally, the RF signals of the UAV are preprocessed and sent to the constructed convolutional neural network for analysis and identification.Experimental results indicate the good performance of the method in detecting the existence of UAV and identifying four types and ten operating modes of UAV,and it is of strong robustness and environmental anti-interference capability.

参考文献

[1] EASON J,XU C,SONG H.Software Define Radio in Realizing the Intruding UAS Group Behavior Prediction[C]∥2020 IEEE 39th International Performance Computing and Communications Conference(IPCCC).Austin:IEEE,2020:1-5.

[2] SHI X,YANG C,XIE W,C.et al.Anti-drone System with Multiple Surveillance Technologies:Architecture,Implementation,and Challenges[J].IEEE Commun.Mag.,2018,56(4):68-74.

[3] 赵时轮.无人机危害及恐怖行为反制对策研究[J].中国军转民,2019(6):15-20.

[4] 张嘉,李润文,崔铠韬.浅析无人机管控手段及无人机无线电反制设备对民航空管运行的影响[J].中国无线电,2019(8):16-18.

[5] AL-SA’D M F,AL-ALI A,MOHAMED A,et al.RF-based Drone Detection and Identification Using Deep Learning Approaches:An Initiative Towards a Large Open Source Drone Database[J].Future Generation Computer Systems,2019,100:86-97.

[6] 侯涛,郑郁正.基于深度学习的通信信号调制方式识别[J].无线电工程,2019,49(9):796-800.

[7] XU C,HE F,CHEN B,et al.Adaptive RF Fingerprint Decomposition in Micro UAV Detection based on Machine Learning[C]//ICASSP 2021-2021 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).Toronto:IEEE ,2021:7968-7972.

[8] IANNACE G,CIABURRO G,TREMATERRA A.Acoustical Unmanned Aerial Vehicle Detection in Indoor Scenarios Using Logistic Regression Model[J].Building Acoust.,2021,28(1):77-96.

[9] WU M J,XIE W G,SHI X F,et al,Real-time Drone Detection Using Deep Learning Approach[C]//Machine Learning and Intelligent Communications,Springer International Publishing.Cham:Springer,2018:22-32.

[10] NGUYEN P,RAVINDRANATHA M,NGUYEN A,et al.Investigating Cost-effective RF-based Detection of Drones[C]∥Proceedings of the 2nd Workshop on Micro Aerial Vehicle Networks,Systems,and Applications for Civilian Use.New York:ACM,2016:17-22.

[11] EZUMA M,ERDEN F,ANJINAPPA C K,et al.Detection and Classification of UAVs Using RF Fingerprints in the Presence of Wifi Bluetooth Interference[J].IEEE Open Journal of the Communications Society,2020,1:60-76.

[12] 蒋平,谢跃雷.一种民用小型无人机的射频指纹识别方法[J].电讯技术,2021,61(6):737-743.

[13] 陈君胜,杨小勇,徐怡杭.基于遥控信号频谱特征的无人机识别算法[J].无线电工程,2019,49(2):101-106.

[14] 姚君宇,许小东.一种嵌入射频指纹的半监督辐射源识别方法[J].无线电工程,2019,49(11):939-944.

[15] ZHANG H,CAO C,XU L,et al.A UAV Detection Algorithm Based on an Artificial Neural Network[J].IEEE Access,2018,6:24720-24728.

[16] 何小勇,韩兵,张笑语,等.一种基于无线电信号特征识别的无人机监测算法设计[J].中国无线电,2019(11):72-74.

[17] ZUO M,XIE S,ZHANG X,et al.Recognition of UAV Video Signal Using RF Fingerprints in the Presence of WiFi Interference[J].IEEE Access,2021,9:88844-88851.

[18] AL-EMADI S A,AL-SENAID F R.Drone Detection Approach Based on Radio-frequency Using Convolutional Neural Network[C]//2020 IEEE International Conference on Informatics,IoT,and Enabling Technologies(ICIoT 20).Malmo:IEEE,2020:29-34.

基本信息:

DOI:

中图分类号:TP183;TN911.7;V279

引用信息:

[1]杨小伟,文清丰,杨雪等.基于卷积神经网络的无人机射频信号识别[J].无线电工程,2022,52(03):456-462.

基金信息:

天津市电力公司科技项目(KJ21-1-7)~~

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文