河北科技大学信息科学与工程学院;
针对复杂场景下目标外观变化明显、运动不规律易导致轨迹中断和身份切换频繁等问题,从重识别(Re-Identification, Re-ID)特征、数据关联和插值等方面对跟踪器进行改进,提出基于改进CStrack关联策略的多目标跟踪算法。使用外观特征更新模块,减小因视角改变、目标移动导致特征剧烈变化而产生的影响,增强特征间的关联。提出二次关联方法,根据高低置信度检测结果的特点,使用不同的度量方式进行二次关联:第一次关联使用IoU距离融合外观特征作为关联的代价矩阵,第二次使用扩展IoU关联,缓解运动估计偏差、外观不可区分导致度量失效的问题;采用高斯回归算法,考虑运动信息,通过插值补偿漏检。在MOT17、MOT20数据集上进行测试,跟踪精度分别达到73.9%、64.2%。实验结果表明,该方法在跟踪精度上有明显优势,能够较好地适应复杂场景。
187 | 2 | 25 |
下载次数 | 被引频次 | 阅读次数 |
[1] 张相胜,沈庆.基于改进YOLOv3的多目标跟踪算法研究[J].激光与光电子学进展,2021,58(16):190-200.
[2] 曹自强,赛斌,吕欣.行人跟踪算法及应用综述[J].物理学报,2020,69(8):41-58.
[3] 张瑶,卢焕章,张路平,等.基于深度学习的视觉多目标跟踪算法综述[J].计算机工程与应用,2021,57(13):55-66.
[4] 黄凯文,凌六一,王成军,等.基于改进YOLO和DeepSORT的实时多目标跟踪算法[J].电子测量技术,2022,45(6):7-13.
[5] YU F W,LI W B,LI Q Q,et al.POI:Multiple Object Tracking with High Performance Detection and Appearance Feature [C]//European Conference on Computer Vision.Amsterdam:Springer,2016:36-42.
[6] WANG Z D,LIANG Z,LIU Y X,et al.Towards Real-time Multi-object Tracking [C]//European Conference on Computer Vision.Glasgow:Springer,2020:107-122.
[7] ZHANG Y F,WANG C Y,WANG X G,et al.FairMOT:On the Fairness of Detection and Re-identification in Multiple Object Tracking[J].International Journal of Computer Vision,2021,129(11):3069-3087.
[8] LU Z C,RATHOD V,VOTEL R,et al.RetinaTrack:Online Single Stage Joint Detection and Tracking[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE,2020:14668-14678.
[9] LIANG C,ZHANG Z P,ZHOU X,et al.Rethinking the Competition Between Detection and ReID in Multi-object Tracking[J].IEEE Transactons on Image Processing,2022,31:3182-3196.
[10] KIM J,KIM N,PARK Y W,et al.Object Detection and Classification Based on YOLO-V5 with Improved Maritime Dataset[J].Journal of Marine Science and Engineering,2022,10(3):377.
[11] ZHU M C,JIAO L C,LIU F,et al.Residual Spectral-spatial Attention Network for Hyperspectral Image Classification[J].IEEE Transactions on Geoscience and Remote Sensing,2021,59(1):449-462.
[12] LI H F,QIU K J,CHEN L,et al.SCAttNet:Semantic Segmentation Network with Spatial and Channel Attention Mechanism for High-resolution Remote Sensing Images[J].IEEE Geoscience and Remote Sensing Letters,2021,18(5):905-909.
[13] SUN F S,FAN M B,CAO B H,et al.Cross-correlation Inspired Residual Network for Pulsed Eddy Current Imaging and Detecting of Subsurface Defects[J].IEEE Transactions on Industrial Electronics,2023,70(12):12860-12871.
[14] ZHANG Y F,SUN P Z,JIANG Y,et al.ByteTrack:Multi-object Tracking by Associating Every Detection Box[C]//European Conference on Computer Vision.Tel Aviv:Springer,2022:1-21.
[15] DU Y H,ZHAO Z C,SONG Y,et al.StrongSORT:Make DeepSORT Great Again[J].IEEE Transactions on Multimedia,2023,25:8725-8737.
[16] PANG B,LI Y Z,ZHANG Y F,et al.TubeTK:Adopting Tubes to Track Multi-object in a One-step Training Model[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE,2020:6307-6317.
[17] KOCUR V,FTACNIK M.Multi-class Multi-movement Vehicle Counting Based on CenterTrack [C]//2021 IEEE/ CVF Conference on Computer Vision and Pattern Recognition.Nashville:IEEE,2021:4004-4010.
[18] XU Y H,BAN Y T,DELORME G,et al.TransCenter:Transformers with Dense Representations for Multiple-object Tracking [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,45:7820-7835.
[19] ZHANG Y,SHENG H,WU Y B,et al.Multiplex Labeling Graph for Near-online Tracking in Crowded Scenes[J].IEEE Internet of Things Journal,2020,7(9):7892-7902.
[20] MOSTAFA R,BARAKA H,BAYOUMI A.LMOT:Efficient Light-weight Detection and Tracking in Crowds[J].IEEE Access,2022,10:83085-83095.
基本信息:
DOI:
中图分类号:TP391.41
引用信息:
[1]苏佳,冯康康,孟俊彤等.基于改进CStrack关联策略的多目标跟踪算法[J].无线电工程,2024,54(03):597-606.
基金信息:
国家自然科学基金青年科学基金项目(62105093); 装备预研重点实验室基金项目(6142A010301)~~