0 | 0 | 1 |
下载次数 | 被引频次 | 阅读次数 |
针对非合作无人机信号盲侦测领域中的信号检测和识别问题,在分析了其图传信号时频域及高阶累积量特性后,提出了一种基于信号高阶累积量的无人机信号盲侦测方法。在短时傅里叶变换(Short-Time Fourier Transform, STFT)信道化结构下完成信号的时频域转换,统计其功率谱均值生成动态检测门限,判断信号存在性、信号个数及其带宽信息;根据功率谱计算峰度特征,在信号存在性、信号带宽及峰度值3个维度下联合判断是否存在无人机图传信号。通过采集真实无人机信号并进行数字仿真的方式,验证了所提方法的有效性。
Abstract:For the problem of signal detection and identification in the field of blind detection for non-cooperative UAVs, a method of UAVs signal blind detection based on signal higher-order cumulants is proposed after analyzing the characteristics of time-frequency domain and higher-order cumulants of image transmission signal. In this method, the time-frequency domain conversion of the signal is completed under the Short-Time Fourier Transform(STFT) channelized structure. Then, the mean value of the power spectrum is calculated to generate a dynamic detection threshold to determine the existence of the signal, the number of signals and the bandwidth information. Also, the kurtosis characteristics are calculated according to the power spectrum. Finally, the existence of the signal, the signal bandwidth and the kurtosis value are three dimensions to determine whether the UAV image transmission signal exists. The effectiveness of this method is verified by collecting real UAV signals and conducting digital simulations.
[1] CUI J J,LIU Y W,NALLANATHAN A .Multi-agent Reinforcement Learning Based Resource Allocation for UAV Networks[J].IEEE Transactions on Wireless Communications,2019,19(2):729-743.
[2] 张静,张科,王靖宇,等.低空反无人机技术现状与发展趋势[J].航空工程进展,2018,9(1):1-8.
[3] XIAO Y,ZHANG X J.Micro-UAV Detection and Identification Based on Radio Frequency Signature[C]//2019 6th International Conference on Systems and Informatics(ICSAI).Shanghai:IEEE,2020:1056-1062.
[4] 陈君胜,杨小勇,徐怡杭.基于遥控信号频谱特征的无人机识别算法[J].无线电工程,2019,49(2):101-106.
[5] HUANG Y X,HU S,WU G.A TDMA Approach for OFDM-based Multiuser RadCom Systems[J].China Communications,2023,20(5):93-103.
[6] 龚仕仙,魏玺章,黎湘.宽带数字信道化接收机综述[J].电子学报,2013,41(5):949-959.
[7] 杨小伟,文清丰,杨雪,等.基于卷积神经网络的无人机射频信号识别[J].无线电工程,2022,52(3):456-462.
[8] 彭博.无人机图传信号分析与识别研究[D].北京:北京邮电大学,2020.
[9] KIM J,RYU H G .Inter-subcarrier Interference Compensation in the Frequency-hopped Single-carrier Frequency Division Multiple Access Communication System[J].IET Communications,2010,4(12):1443-1451.
[10] 韩子硕,范喜全,郝齐.国内外无人机系统研究进展及应用[J].无线电工程,2024,54(5):1236-1246.
[11] 梁晶,杨晶晶,黄铭.基于深度学习的无线通信信号检测与识别研究[J].无线电工程,2023,53(3):611-618.
[12] 张静,张科,王靖宇,等.低空反无人机技术现状与发展趋势[J].航空工程进展,2018,9(1):1-8.
[13] 曾政智,周嘉伟,罗正华.同频段混合信号中的无人机信号盲检测识别[J].电讯技术,2020,60(6):689-694.
[14] 蒋清平.OFDM信号盲估计与识别关键技术研究[D].重庆:重庆大学,2010.
[15] 姚志成,张冠华,王海洋,等.干扰背景下基于改进AlexNet的无人机信号识别方法[J].电光与控制,2024,31(6):14-18.
[16] 谢跃辉,张一闻,赵亚欣,等.基于峰度和小波变换的超短波信号调制识别[J].现代电子技术,2016,39(23):9-12.
[17] 位小记,张俊威,万紫,等.基于高阶累积量的OFDM信号和单载波信号识别[J].自动化应用,2023,64(1):100-103.
[18] 史飞,陶丽红,闫红超,等.一种基于相位轨迹的 OFDM 信号盲分析方法[J].无线电工程,2023,53(6):1403-1408.
[19] 李剑强,崔伟亮,江桦,等.OQAM/OFDM信号二阶循环平稳性分析[J].电子与信息学报,2011,33(5):1076-1081.
基本信息:
DOI:
中图分类号:TN911.7;V279
引用信息:
[1]史方明,陈格格,陈祎等.基于信号高阶累积量的无人机信号盲侦测方法[J].无线电工程,2025,55(06):1223-1229.
基金信息: