云南民族大学数学与计算机科学学院;
针对遥感图像目标排列紧密、背景复杂和小目标众多导致检测精度低的问题,提出了一种基于改进实时检测Transformer(Real-Time Detection Transformer, RT-DETR)的遥感图像检测算法。将Mosaic9数据增强应用到遥感数据中,丰富训练数据中场景和目标的组合,增强模型对不同环境下目标的识别能力。在主干网络中添加卷积块注意力模块(Convolutional Block Attention Module, CBAM),增强复杂背景下目标的关注度和图像特征提取能力,在模型中额外添加一个针对小目标的检测层,使小目标的细节特征更加突出,提升模型对小目标的检测能力。在DSTD舰船遥感数据集和NWPU VHR-10多类别遥感数据集上的实验结果显示,改进后的算法在交并比(Intersection over Union, IoU)阈值为0.5时,平均精度均值(mean Average Precision, mAP)分别达到了94.9%和94.5%,较原始RT-DETR算法分别提升了1%和1.3%,体现了改进算法在遥感图像检测上的有效性和通用性。
830 | 0 | 31 |
下载次数 | 被引频次 | 阅读次数 |
[1] 王文韬,何小海,张豫堃,等.基于改进STANet的遥感图像变化检测算法[J].无线电工程,2024,54(5):1226-1235.
[2] 程换新,矫立浩,骆晓玲,等.改进YOLOv8的遥感图像检测算法[J].无线电工程,2024,54(5):1155-1161.
[3] 余俊宇,刘孙俊,许桃.融合注意力机制的YOLOv7遥感小目标检测算法研究[J].计算机工程与应用,2023,59(20):167-175.
[4] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition.Columbus:IEEE,2014:580-587.
[5] GIRSHICK R.Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision (ICCV).Santiago:IEEE,2015:1440-1448.
[6] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:Towards Real-time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[7] HE K M,GEORGIA G,PIOTR D,et al.Mask R-CNN[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(2):386-397.
[8] REDMON J,DIVVALA S,GIRSHICK R,et al.You Only Look Once:Unified,Real-time Object Detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:779-788.
[9] REDMON J,FARHADI A.YOLOv3:An Incremental Improvement[EB/OL].(2018-04-08) [2024-05-04].https://arxiv.org/abs/1804.02767.
[10] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:Optimal Speed and Accuracy of Object Detection[EB/OL].(2020-04-23) [2024-05-04].https://arxiv.org/abs/2004.10934.
[11] REDMON J,FARHADI A.YOLO9000:Better,Faster,Stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:7263-7271.
[12] LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single Shot Multibox Detector[C]// 14th European Conference on Computer Vision.Amsterdam:Springer,2016:21-37.
[13] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal Loss for Dense Object Detection[C]//2017 IEEE International Conference on Computer Vision.Venice:IEEE,2017:2980-2988.
[14] CARION N,MASSA F,SYNNAEVE G,et al.End-to-End Object Detection with Transformers[C]//16th European Conference on Computer Vision.Glasgow:Springer,2020:213-229.
[15] ZHAO Y A,LV W Y,XU S L,et al.DETRs Beat YOLOs on Real-time Object Detection[EB/OL].(2023-04-17)[2024-04-14].https://arxiv.org/abs/2304.08069.
[16] 金睿蛟,王堃,刘敏豪,等.基于DETR和改进去噪训练的光学遥感图像多尺度旋转目标检测(特邀)[J].激光与光电子学进展,2024,61(2):356-366.
[17] 刘敏豪,王堃,金睿蛟,等.基于改进RoI Transformer的遥感图像多尺度旋转目标检测[J].应用光学,2023,44(5):1010-1021.
[18] 周孟然,王澳.基于DETR的轻量级遥感图像目标检测算法[J/OL].(2024-03-29) [2024-05-04].http://kns.cnki.net/kcms/detail/50.1155.N.20240328.1703.004.html.
[19] ZHOU Y,CHEN S L,ZHAO J Q,et al.CLT-Det:Correlation Learning Based on Transformer for Detecting Dense Objects in Remote Sensing Images[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:4708915.
[20] WOO S H,PARK J C,LEE J Y,et al.CBAM:Convolutional Block Attention Module[C]//15th European Conference on Computer Vision (ECCV).Munich:Springer,2018:3-19.
[21] XU L Z,YAN W,JI J S.The Research of a Novel WOG-YOLO Algorithm for Autonomous Driving Object Detection[J].Scientific Reports,2023,13:3699.
[22] HE K M,ZHANG X Y,REN S Q,et al.Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:770-778.
[23] CARON M,TOUVRON H,MISRA I,et al.Emerging Properties in Self-supervised Vision Transformers[C]//2021 IEEE/CVF International Conference on Computer Vision.Montreal:IEEE,2021:9650-9660.
[24] LECUN Y,BOSER B,DENKER J S,et al.Backpropagation Applied to Handwritten Zip Code Recognition[J].Neural Computation,1989,1(4):541-551.
[25] 何维娟,江涛,王林飞,等.舰船遥感图像数据集DSTD的构建研究[J].计算机技术与发展,2022,32(7):82-86.
[26] LI K,WAN G,CHENG G,et al.Object Detection in Optical Remote Sensing Images:A Survey and a New Benchmark[J].ISPRS Journal of Photogrammetry and Remote Sensing,2020,159:296-307.
基本信息:
DOI:
中图分类号:TP751
引用信息:
[1]白金燕,江涛,魏玉梅等.基于改进RT-DETR的遥感图像检测算法[J].无线电工程,2025,55(02):334-342.
基金信息:
国家自然科学基金(61363022)~~