415 | 2 | 127 |
下载次数 | 被引频次 | 阅读次数 |
5G网络是车联网(Internet of Vehicles, IoV)发展的关键一步,其低时延的特点可以实现自动驾驶车辆对前方实时交通信息感知的需求,为预先制动、提前绕行等驾驶行为提供参考。针对混合交通场景中手动驾驶车辆可能会出现的危险驾驶行为,基于长短时记忆(Long Short-Term Memory, LSTM)网络和无线集群学习框架,提出了一种基于车联网的无线集群智能轨迹预测(Swarm Learning-based Trajectory Prediction, SLTP)算法。SLTP算法以智能网联汽车为研究对象,在使用去中心化的无线集群学习保护用户隐私数据的同时,使用车车无线通信系统感知周边手动驾驶车辆的历史轨迹信息并给出轨迹预测。通过使用美国高速公路行车NGSIM(Next Generation Simulation)的真实交通数据集评估SLTP的轨迹预测准确性能,评估结果表明,与现有的基于LSTM网络轨迹预测方法相比,SLTP算法在同样的无线通信开销下对于周边手动驾驶车辆的轨迹预测误差降低了43.1%,表明SLTP算法在车联网场景下的轨迹预测应用中具有良好的鲁棒性和准确性。
Abstract:5 G network is critical in developing the Internet of Vehicles(IoV).Its low delay characteristics can make autonomous vehicles realize the real-time traffic information perception and select driving behaviors ahead, such as pre braking and early detour.To address the risk caused by manually driving vehicles in mixed traffic scenarios, a wireless Swarm Learning Trajectory Prediction(SLTP) algorithm based on the Internet of vehicles is proposed, which is based on Long Short-Term Memory(LSTM) and wireless swarm learning.The SLTP algorithm takes the Automatic CV as the investigated subject.While using the decentralized Wireless Swarm Learning framework to protect the private data of users, SLTP predicts future trajectories of surrounding vehicles by using the vehicle-vehicle wireless communication system to aware the history information of the surrounding manual driving vehicles.Multiple experiments are done under the Next Generation Simulation(NGSIM),the actual traffic dataset from America is used to evaluate the accuracy of SLTP prediction results.The comparison results show that SLTP can improve the trajectory prediction accuracy by 43.1% compared with the existing methods based on LSTM,indicating that SLTP has better robustness and performance in trajectory prediction in IoV scenario.
[1] 秦严严,张健,陈凌志,等.手动-自动驾驶混合交通流元胞传输模型[J].交通运输工程学报,2020,20(2):229-238.
[2] MOZAFFARI S,AL-JARRAH O Y,DIANATI M,et al.Deep Learning-based Vehicle Behaviour Prediction For Autonomous Driving Applications:A Review[J].arXiv preprint arXiv,1912.11676,2019.
[3] 杨建国,王金梅,李庆丰,等.用于微观仿真车辆模型中轨迹的简化算法[J].中南公路工程,2005,30(1):168-170.
[4] LIN L,GONG S Y,LI T.Deep Learning-based Human-Driven Vehicle Trajectory Prediction and Its Application for Platoon Control of Connected and Autonomous Vehicles[C]//The Autonomous Vehicles Symposium.San Francisco:ACM,2018:1260-1266.
[5] 袁娜,史昕,赵祥模.基于改进人工鱼群算法的车辆轨迹规划方法[J].计算机应用,2018,38(10):3030-3035.
[6] 赵树恩,王金祥,李玉玲.基于多目标优化的智能车辆换道轨迹规划[J].交通运输工程学报,2021,21(2):232-242.
[7] 李静林,刘志晗,杨放春.车联网体系结构及其关键技术[J].北京邮电大学学报,2014,37(6):95-100.
[8] 龙银江,吕鹏,于渊,等.一种基于网络切片的车联网联合资源分配算法[J].无线电工程,2020,50(6):509-514.
[9] 李静林,袁泉,杨放春.车联网群智感知与服务[J].中兴通讯技术,2015,21(6):6-9.
[10] JIANG M Z,WU T H,WANG Z,et al.A Multi-intersection Vehicular Cooperative Control Based on End-Edge-Cloud Computing[J].arXiv preprint arXiv,2012.00500,2020.
[11] 高雅诗,李静林.基于马尔科夫随机场的电信欺诈用户检测方法[J].无线电工程,2021,51(3):237-242..
[12] 郎平,田大新,林椿眄.区块链在车联网中的应用综述[J].无人系统技术,2021,4(1):1-7.
[13] JIANG T,FANG H,WANG H.Blockchain-Based Internet of Vehicles:Distributed Network Architecture and Performance Analysis[J].IEEE Internet of Things Journal,2019,6:4640-4649.
[14] WARNAT-HERRESTHAL S,SCHULTZE H,SHASTRY K L,et al.Swarm Learning for Decentralized and Confidential Clinical Machine Learning[J].Nature,2021,594:265-270.
[15] 张晓宁.基于LSTM网络的车辆轨迹预测研究[J].汽车实用技术,2020,45(22):32-33.
[16] COIFMAN B,LI L.A Critical Evaluation of the Next Generation Simulation (NGSIM) Vehicle Trajectory Dataset[J].Transportation Research Part B Methodological,2017,105:362-377.
基本信息:
DOI:
中图分类号:TN929.5;U495
引用信息:
[1]王哲,韩银辉,蒋明智等.混合交通下基于车联网的无线集群智能轨迹预测算法[J].无线电工程,2022,52(01):33-38.
基金信息:
国家科技重大专项(2016YFB0100902)~~