nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 12, v.54 2735-2743
空间数据智能中的轨迹大数据分析:多源融合与前沿进展
基金项目(Foundation): 国家自然科学基金(62272066); 四川省科技计划(2023YFG0027,2024YFFK0413); 教育部人文社会科学研究规划基金(22YJAZH088); 成都市技术创新研发项目重点项目(2024-YF08-00029-GX);成都市技术创新研发项目(2024-YF05-01217-SN); 成都市区域科技创新合作项目(2023-YF11-00020-HZ); CCF-蚂蚁科研基金项目(CCF-AFSG RF20240106)~~
邮箱(Email):
DOI:
摘要:

随着移动设备和传感器技术的快速发展,轨迹大数据已成为空间数据智能研究的关键数据源之一。该领域的研究涵盖多源轨迹数据的获取、融合、分析以及模式挖掘与知识发现的完整流程,在智慧城市、交通管理和位置服务等方面展现出巨大潜力。然而,轨迹数据的复杂性和多样性带来了处理、分析和利用方面的诸多挑战。对轨迹数据的获取与预处理、数据存储、模式识别、预测分析等核心方法进行了系统讨论,总结了其在各类应用场景中的最新进展。探讨了当前研究中存在的主要挑战,对未来的研究方向进行展望,为相关领域提供有价值的参考。

Abstract:

With the rapid development of mobile devices and sensor technology, trajectory big data has become one of the key data sources in spatial data intelligence research. Research in this field covers the complete process of acquisition, integration, analysis, as well as pattern mining and knowledge discovery of multi-source trajectory data, showing great potential in areas such as smart cities, traffic management, and location-based services. However, the complexity and diversity of trajectory data present numerous challenges in terms of processing, analysis, and utilization. To address these issues, the core methods for trajectory data acquisition and preprocessing, data storage, pattern recognition, and predictive analysis are systematically discussed, and the latest advancements in various application scenarios are summarized. In addition, the main challenges in current research are discussed, and future research directions are outlined, providing a valuable reference for related fields.

参考文献

[1] WOLFSON O,XU B,CHAMBERLAIN S,et al.Moving Objects Databases:Issues and Solutions [C]//Proceedings of the Tenth International Conference on Scientific and Statistical Database Management.Capri:IEEE,1998:111-122.

[2] 宋轩,孟小峰,刘克.空间数据智能技术发展及应用分析[J].中国科学基金,2023,37(6):1039-1046.

[3] 高强,张凤荔,王瑞锦,等.轨迹大数据:数据处理关键技术研究综述[J].软件学报,2017,28(4):959-992.

[4] SHEN C H,OUYANG Q Y,LI F B,et al.Lindorm TSDB:A Cloud-native Time-series Database for Large-scale Monitoring Systems[J].Proceedings of the VLDB Endowment,2023,16(12):3715-3727.

[5] NAQVI S N Z,YFANTIDOU S.Time Series Databases and InfluxDB[R].BruxeUes:Université Libre de Bruxelles,2017.

[6] SHUKLA D,SHIVNANI C,SHAH D.Comparing Oracle Spatial and Postgres PostGIS[J].International Journal of Computer Science & Communication,2016,7(6):95-100.

[7] MILLER J J.Graph Database Applications and Concepts with Neo4j[C]//Proceedings of the Southern Association for Information Systems Conference.Atlanta:[s.n.],2013:141-147.

[8] CHOI D J,BAEK Y H,LEE S M,et al.Design and Implementation of a Benchmarking System Based on ArangoDB[J].The Journal of the Korea Contents Association,2021,21(9):198-208.

[9] CHICHO B,MOHAMMED A O.An Empirical Comparison of Neo4j and Tigergraph Databases for Network Centrality[J].Science Journal of University of Zakho,2023,11(2):190-201.

[10] ALAM M M,TORGO L,BIFET A.A Survey on Spatio-temporal Data Analytics Systems[EB/OL](2021-03-17)[2024-01-03].https://arxiv.org/pdf/2103.09883.

[11] 宋縯蛟,周佳悦,王龙浩,等.采用R树和轨迹分段的HMM高效地图匹配方法[J].系统仿真学报,2023,35(2):339-349.

[12] 王浩,王江北,罗浩东,等.基于改进四叉树和比例边界有限元法的自适应设计域拓扑优化方法[J].中国机械工程,2024,35(5):904-915.

[13] ZIMáNYI E,SAKR M,LESUISSE A.MobilityDB:A Mo-bility Database Based on PostgreSQL and PostGIS[J].ACM Transactions on Database Systems (TODS),2020,45(4):1-42.

[14] 王浩成.基于HBase的轨迹大数据管理研究[D].武汉:武汉大学,2023.

[15] 陈逸菲,王玉芳,赵丽玲,等.时间区间上的不确定移动对象距离范围查询[J].计算机系统应用,2017,26(2):189-194.

[16] 王维泽.大规模轨迹数据相似性查询系统的研究与设计[D].大连:大连理工大学,2021.

[17] 熊伟,熊淑怡,曹竞之,等.一种融合图结构的时空轨迹相似性查询算法[J].应用科学学报,2023,41(1):10-22.

[18] 王坤明.基于学习的高效Top-k代表性相似子轨迹查询[D].广州:广州大学,2024.

[19] CAI Z,SHI W,LIU Y.Multi-UAV Collaborative Monitoring for Highway Construction Site[J].Journal of Intelligent & Fuzzy Systems,2019,38(13):3613-3626.

[20] 韦方良.路网上kNN查询算法的研究[D].大连:大连海事大学,2022.

[21] GUTTMAN A.R-trees:A Dynamic Index Structure for Spatial Searching[J].ACM SIGMOD Record,1984,14(2):47-57.

[22] 丁治国,朱学永,郭立,等.自适应多叉树防碰撞算法研究[J].自动化学报,2010,36(2):237-241.

[23] LEUTENEGGER S T,LOPEZ M A,EDGINGTON J.STR:A Simple and Efficient Algorithm for R-tree Packing[C]//Proceedings 13th International Conference on Data Engineering.Birmingham:IEEE,1997:497-506.

[24] FEKIHAL M,JALUTA I,SAINI D K.TB±tree:Index Structure for Information Retrieval Systems[C]//2015 Second International Conference on Computer Science,Computer Engineering,and Social Media.Lodz:IEEE,2015:182-186.

[25] HEGLAND M,DEDMAN J,HEGLAN M.The Apriori Algorithm-A Tutorial[J].Mathematics and Computation in Imaging Science and Information Processing,2007(10):209-262.

[26] SARAF P P,SEDAMKAR R,RATHI S.PrefixSpan Algorithm for Finding Sequential Pattern with Various Constraints[J].International Journal of Applied Information Systems,2015,9(3):37-41.

[27] KRISHNA K,MURTY M N.Genetic K-means algorithm[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B(Cybernetics),1999,29(3):433-439.

[28] COSENTINO R,BALESTRIERO R,BAHROUN Y,et al.Spatial Transformer K-means[C]//2022 56th Asilomar Conference on Signals,Systems,and Computers.Pacific Grove:IEEE,2022:1444-1448.

[29] ROSS A,KIM J,MCKAY M,et al.The Economics of a National Anterior Cruciate Ligament Injury Prevention Program for Amateur Football Players:A Markov Model Analysis[J].The Medical journal of Australia,2024,221(3):149-155.

[30] EDDY S R.Hidden Markov Models[J].Current Opinion in Structural Biology,1996,6(3):361-365.

[31] KARITA S,CHEN N X,HAYASHI T,et al.A Comparative Study on Transformer vs RNN in Speech Applications[C]//2019 IEEE Automatic Speech Recognition and Understanding Workshop.Singapore:IEEE,2019:449-456.

[32] YU Y,SI X S,HU C H,et al.A Review of Recurrent Neural Networks:LSTM Cells and Network Architectures[J].Neural Computation,2019,31(7):1235-1270.

[33] LAI K H,ZHA D C,ZHOU K X,et al.Policy-GNN:Aggregation Optimization for Graph Neural Networks[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.New York:ACM,2020:461-471.

[34] 柴曼妮.基于注意力机制的车辆异常轨迹检测[J].现代计算机,2024,30(3):71-75.

[35] 邹彬.云环境下大数据计算机处理技术应用分析[J].信息与电脑(理论版),2023,35(24):16-18.

基本信息:

DOI:

中图分类号:TP311.13

引用信息:

[1]李任杰,韩楠,李庆等.空间数据智能中的轨迹大数据分析:多源融合与前沿进展[J].无线电工程,2024,54(12):2735-2743.

基金信息:

国家自然科学基金(62272066); 四川省科技计划(2023YFG0027,2024YFFK0413); 教育部人文社会科学研究规划基金(22YJAZH088); 成都市技术创新研发项目重点项目(2024-YF08-00029-GX);成都市技术创新研发项目(2024-YF05-01217-SN); 成都市区域科技创新合作项目(2023-YF11-00020-HZ); CCF-蚂蚁科研基金项目(CCF-AFSG RF20240106)~~

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文