1,547 | 11 | 20 |
下载次数 | 被引频次 | 阅读次数 |
针对无人机航迹规划求解计算量大、收敛难等问题,提出了一种融入了混沌映射和莱维飞行的多策略蜣螂优化(Piecewise Levy Flight Dung Beetle Optimizer, PLDBO)算法的航迹规划方法。建立了三维任务空间模型和无人机路径规划成本函数,将路径规划问题转化为多维函数优化问题。对蜣螂优化(Dung Beetle Optimizer, DBO)算法调用Piecewise混沌映射,改变其初始化过程,增强种群的多样性,加快收敛速度。引入黄金正弦改进滚球蜣螂位置更新公式,有效协调了全局搜索能力与局部挖掘能力,加快了收敛速度。在小偷蜣螂位置更新公式引入Levy策略,增强算法跳出局部最优的能力。引入了一种具有策略自适应的横向交叉,提高了算法的收敛精度,增强了全局寻优能力。通过将提出的改进算法在知名的15个经典基准函数上比较,全面验证了PLDBO算法的优越性,并应用于航迹规划问题求解。仿真结果表明,PLDBO算法能获得更可行、更高效的路径。
Abstract:A Piecewise Levy Flight Dung Beetle Optimizer(PLDBO) is proposed to solve the problems of UAV flight path planning, which requires a lot of computation and is difficult to converge. Firstly, a 3D mission space model and the UAV path planning cost function are established, and the path planning problem is transformed into a multidimensional function optimization problem. Secondly, the Piecewise chaotic mapping is invoked on Dung Beetle Optimizer(DBO) algorithm to change its initialization process, enhance the diversity of the population, and accelerate the convergence speed. Then, the golden sine is introduced to improve the position update formula of dung beetle, which effectively coordinates the global search ability and local mining ability, and speeds up the convergence. Levy strategy is introduced into the thieving dung beetle position update formula to enhance the ability of the algorithm to jump out of the local optima. Then a horizontal crossover with adaptive strategy is introduced to improve the convergence accuracy of the algorithm and enhance the global optimization ability. Finally, the advantages of PLDBO are fully verified by comparison on 15 well-known classical benchmark functions, and the proposed algorithm is applied to the path planning problem. The simulation results show that PLDBO can obtain more feasible and efficient paths.
[1] YU X B,LUO W G.Reinforcement Learning-based Multi-strategy Cuckoo Search Algorithm for 3D UAV Path Planning[J].Expert Systems with Applications,2023,223:119910.
[2] JIANG W,LYU Y X,LI Y F,et al.UAV Path Planning and Collision Avoidance in 3D Environments Based on POMPD and Improved Grey Wolf Optimizer[J].Aerospace Science and Technology,2022,121:107314.1-107314.11.
[3] SATHYARAJ M B,JAIN C L,FINN A,et al.Multiple UAVs Path Planning Algorithms:A Comparative Study[J].Fuzzy Optimization and Decision Making,2008,7(3):257-267.
[4] ZHANG Z,JIANG J,WU J,et al.Efficient and Optimal Penetration Path Planning for Stealth Unmanned Aerial Vehicle Using Minimal Radar Cross-section Tactics and Modified A-star Algorithm[J].ISA Transactions,2022,134:42-57.
[5] LIU W,ZHENG Z,CAI K.Bi-level Programming Based Real-time Path Planning for Unmanned Aerial Vehicles[J].Knowledge-Based Systems,2013,44:34-47.
[6] WANG W,DENG H,WU X S.Path Planning of Loaded Pin-jointed Bar Mechanisms Using Rapidly-exploring Random Tree Method[J].Computers and Structures,2018,209:65-73.
[7] WANG G G,CHU H C E,MIRJALILI S.Three-dimensional Path Planning for UCAV Using an Improved Bat Algorithm[J].Aerospace Science and Technology,2016,49:231-238.
[8] TROJOVSKá E,DEHGHANI M,TROJOVSK P.Zebra Optimization Algorithm:A New Bio-inspired Optimization Algorithm for Solving Optimization Algorithm[J].IEEE Access,2022,10:49445-49473.
[9] ZHANG Y Y,JIN Z G.Group Teaching Optimization Algorithm:A Novel Metaheuristic Method for Solving Global Optimization Problems[J].Expert Systems with Applications,2020,148:113246.
[10] MOHAMMADI-BALANI A,NAYERI M D,AZAR A,et al.Golden Eagle Optimizer:A Nature-inspired Meta-heuristic Algorithm[J].Computers & Industrial Engineering,2021,152:107050.
[11] HASHIM F A,HOUSSEIN E H,HUSSAIN K,et al.Honey Badger Algorithm:New Metaheuristic Algorithm for Solving Optimization Problems[J].Mathematics and Computers in Simulation,2022,192:84-110.
[12] HU G,ZHONG J Y,DU B,et al.An Enhanced Hybrid Arithmetic Optimization Algorithm for Engineering Applications[J].Computer Methods in Applied Mechanics and Engineering,2022,394:114901.
[13] POZNA C,PRECUP R E,HORVáTH E,et al.Hybrid Particle Filter-particle Swarm Optimization Algorithm and Application to Fuzzy Controlled Servo Systems[J].IEEE Transactions on Fuzzy Systems,2022,30(10):4286-4297.
[14] LIN J T,CHEN C M.Simulation Optimization Approach for Hybrid Flow Shop Scheduling Problem in Semiconductor Back-end Manufacturing[J].Simulation Modelling Practice and Theory,2015,51:100-114.
[15] HU G,DU B,WANG X F,et al.An Enhanced Black Widow Optimization Algorithm for Feature Selection[J].Knowledge-Based Systems,2022,235:107638.
[16] XUE J K,SHEN B.Dung Beetle Optimizer:A New Meta-heuristic Algorithm for Global Optimization[J].The Journal of Supercomputing,2022,79(7):7305-7336.
[17] 李斌,高鹏,郭自强.改进蜣螂算法优化LSTM的光伏阵列故障诊断[J/OL].电力系统及其自动化学报,1-10[2023-09-01].https://doi.org/10.19635/j.cnki.csu-epsa.001317.
[18] 潘志远,卜凡亮.基于蜣螂算法优化的DV-Hop定位算法[J].电子测量与仪器学报,2023,37(7):33-41.
[19] YU Y,GAO S C,CHENG S,et al.CBSO:A Memetic Brain Storm Optimization with Chaotic Local Search[J].Memetic Computing,2018,10(4):353-367.
[20] 王子恺,黄学雨,朱东林,等.融合边界处理机制的学习型麻雀搜索算法[J/OL].北京航空航天大学学报,1-16[2023-08-01].https://doi.org/10.13700/j.bh.1001-5965.2022.0195.
[21] 高晨峰,陈家清,石默涵.融合黄金正弦和曲线自适应的多策略麻雀搜索算法[J].计算机应用研究,2022,39(2):491-499.
[22] 尹德鑫,张达敏,蔡朋宸,等.改进的麻雀搜索优化算法及其应用[J].计算机工程与科学,2022,44(10):1844-1851.
[23] MENG A B,CHEN Y C,YIN H,et al.Crisscross Optimization Algorithm and Its Application[J].Knowledge-Based Systems,2014,67(4):218-229.
[24] QIN A K,HUANG V L,SUGANTHAN P N.Differential Evolution Algorithm with Strategy Adaptation for Global Numerical Optimization[J].IEEE Transactions on Evolutionary Computation,2009,13(2):398-417.
[25] SALGOTRA R,SINGH U,SINGH G,et al.A Self-adaptive Hybridized Differential Evolution Naked Mole-rat Algorithm for Engineering Optimization Problems[J].Computer Methods in Applied Mechanics and Engineering,2021,383:113916.
基本信息:
DOI:
中图分类号:V279;V249
引用信息:
[1]甄然,袁明明,武晓晶等.基于改进蜣螂算法的无人机航迹规划[J].无线电工程,2024,54(10):2412-2424.
基金信息:
国家自然科学基金(62003129)~~