nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 07, v.54 1732-1738
基于深度学习的智能表面毫米波波束赋形
基金项目(Foundation): 国家重点研发计划(2018YFB1700200)~~
邮箱(Email):
DOI:
摘要:

基于深度学习的大型智能表面毫米波波束赋形问题,引入具有少量有源元件的大型智能表面(Large Intelligence Surface, LIS)后,通过一系列实验对比研究了卷积神经网络(Convolutional Neural Network, CNN)算法下波束赋形的性能。通过使用DeepMIMO数据集中具体场景下的射线追踪信道数据构造通信场景,并采用神经网络模型CNN、反向传播(Back Propagation, BP)和多层感知器(Multi-Layer Perceptron, MLP)算法学习毫米波通信环境。实验考虑了多个参数条件,包括路径数、有源单元数量、发射功率和数据集大小。结果表明,CNN算法在所有参数条件下均优于另外2种算法,在增加路径数和有源单元数量的情况下,CNN算法的性能优势更为显著。此外,增加数据集大小也可以提高CNN算法的性能表现。实验结果为相关领域的研究和实际应用提供了有价值的参考,对于改进毫米波通信系统性能具有重要意义。

Abstract:

To deal with the problem of deep learning-based Large Intelligent Surface(LIS) millimeter-wave beamforming, a LIS with a limited number of active components is incorporated, then the performance of beamforming under the Convolutional Neural Network(CNN) algorithm is scrutinized through a series of experimental comparisons. The ray-tracing channel data from the DeepMIMO dataset are used to construct communication scenarios in specific environments, and the neural network models, CNN, Back Propagation(BP), and Multi-Layer Perceptron(MLP) algorithms are employed to learn the millimeter-wave communication environment. The experiments take various parameter conditions into consideration, including the number of paths, the quantity of active elements, transmit power and dataset size. The results indicate that the CNN algorithm outperforms the other two algorithms under all parameter conditions. Furthermore, as the number of paths and active elements increases, the performance advantage of the CNN algorithm becomes even more pronounced. Additionally, increasing the dataset size also contributes to enhancing the performance of the CNN algorithm. The experimental findings provide valuable references for the research and practical applications in related fields, and hold significant importance in enhancing the performance of millimeter-wave communication systems.

参考文献

[1] ALMASI M A,AMIRI R,MEHRPOUYAN H.A New Millimeter Wave MIMO System for 5G Networks[EB/OL].(2018-07-12) [2023-07-26].https://arxiv.org/abs/1807.04851.

[2] 陈迎新,岳殿武,任静,等.多可重构智能表面辅助通信系统的性能研究[J].无线电工程,2022,52(12):2124-2131.

[3] TAHA A,ALRABEIAH M,ALKHATEEB A.Deep Learning for Large Intelligent Surfaces in Millimeter Wave and Massive MIMO Systems[C]//2019 IEEE Global Communications Conference.Waikoloa:IEEE,2019:1-6.

[4] ALRABEIAH M,ALKHATEEB A.Deep Learning for mmWave Beam and Blockage Prediction Using Sub-6 GHz Channels[J].IEEE Transactions on Communications,2020,68(9):5504-5518.

[5] 李苗钰,杜忠昊,刘雨彤,等.一种面向物联网的智能反射面通信系统优化方法[J].西北工业大学学报,2021,39(2):454-461.

[6] SHEEN B,YANG J,FENG X L,et al.A Digital Twin for Reconfigurable Intelligent Surface Assisted Wireless Communication[EB/OL].(2020-09-01) [2023-07-26].https://arxiv.org/abs/2009.00454.

[7] 张志晨,王昱凯,王荣,等.基于深度学习的 OFDM-IM 信号检测方法[J].无线电工程,2023,53(7):1572-1577.

[8] AYGüL M A,NAZZAL M,ARSLAN H.Deep Learning-based Optimal RIS Interaction Exploiting Previously Sampled Channel Correlations[C]//2021 IEEE Wireless Communications and Networking Conference.Nanjing:IEEE,2021:1-6.

[9] ELBIR A M,PAPAZAFEIROPOULOS A,KOURTESSIS P,et al.Deep Channel Learning for Large Intelligent Surfaces Aided mm-Wave Massive MIMO Systems[J].IEEE Wireless Communications Letters,2020,9(9):1447-1451.

[10] 徐顺清,石晶林,周一青,等.基于波束训练的大规模MIMO多用户度调度算法[J].高技术通讯,2022,32(3):248-260.

[11] 刘晨阳,王国刚,潘多涛,等.超材料智能表面在MIMO无线网络中辅助应用的仿真研究[J].电波科学学报,2023,38(2):325-333.

[12] 齐月月,孙强,钱盼盼,等.基于ResNet的大型智能表面在毫米波系统中的应用[J].电讯技术,2021,61(1):8-14.

[13] 刘紫燕,马珊珊,梁静,等.注意力机制CNN的毫米波大规模MIMO系统信道估计算法[J].系统工程与电子技术,2022,44(1):307-312.

[14] TURAN N,UTSCHICK W.Reproducible Evaluation of Neural Network Based Channel Estimators and Predictors Using a Generic Dataset[C]//WSA 2020;24th International ITG Workshop on Smart Antennas.Hamburg:VDE,2020:1-6.

[15] ALKHATEEB A.DeepMIMO:A Generic Deep Learning Dataset for Millimeter Wave and Massive MIMO Applications[EB/OL].(2019-02-18) [2023-04-20].https://arxiv.org/abs/1902.06435.

[16] 邹翔宇,黄崇文,徐勇军,等.基于深度学习的通信系统中安全能效的控制[J].电子与信息学报,2022,44(7):2245-2252.

[17] ALJUMAILY M S,LI H S.Mobility Speed Effect and Neural Network Optimization for Deep MIMO Beamforming in mmWave Networks[J].International Journal of Computer Networks and Communications,2020,12(6):1-14.

[18] TAHA A,ALRABEIAH M,ALKHATEEB A.Enabling Large Intelligent Surfaces with Compressive Sensing and Deep Learning[J].IEEE Access,2021,9:44304-44321.

基本信息:

DOI:

中图分类号:TN929.5;TP18

引用信息:

[1]张思伟,袁德成,王国刚.基于深度学习的智能表面毫米波波束赋形[J].无线电工程,2024,54(07):1732-1738.

基金信息:

国家重点研发计划(2018YFB1700200)~~

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文