nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2023, 09, v.53 2036-2045
超密集边缘计算网络下的任务卸载与资源分配
基金项目(Foundation): 国家自然科学基金(61761007)~~
邮箱(Email):
DOI:
摘要:

将超密集网络(Ultra Dense Network, UDN)技术应用于多接入边缘计算(Muti-Access Edge Computing, MEC),通过密集化部署小基站与边缘服务器,提升了系统容量。大量用户的接入带来的计算与通信资源不足、用户之间产生严重干扰等问题,使得任务卸载过程面临巨大挑战,制定合理的卸载方案显得尤为重要。针对上述问题,联合考虑了计算与通信资源分配、功率控制,提出了基于混合遗传模拟退火算法(Hybrid Genetic Simulated Annealing Algorithm, HGSAA)的任务卸载方法。通过实验仿真表明,所提方法与其他传统方法相比,提高了用户的卸载效益。

Abstract:

Ultra Dense Network(UDN) is applied to Muti-Access Edge Computing(MEC), and the system capacity is improved by the dense deployment of small base stations and edge servers. However, due to the lack of computing and communication resources and the serious interference between users brought by the access of a large number of users, the task uninstallation process faces great challenges. Therefore, it is particularly important to formulate a reasonable uninstallation scheme. To solve these problems, a task offloading method based on Hybrid Genetic Simulated Annealing Algorithm(HGSAA) is proposed by considering the allocation of computing and communication resources and power control. The experimental simulation shows that the proposed method improves the unloading efficiency of users compared with other traditional methods.

参考文献

[1] LINTHICUM D S.Connecting Fog and Cloud Computing[J].IEEE Cloud Computing,2017,4(2):18-20.

[2] MAO Y Y,YOU C S,ZHANG J,et al.A Survey on Mobile Edge Computing:The Communication Perspective[J].IEEE Communications Surveys & Tutorials,2017,19(4):2322-2358.

[3] LIU Y,LI Y,NIU Y,et al.Joint Optimization of Path Planning and Resource Allocation in Mobile Edge Computing[J].IEEE Transactions on Mobile Computing,2020,19(9):2129-2144.

[4] WU D,HUANG X,XIE X F,et al.LEDGE:Leveraging Edge Computing for Resilient Access Management of Mobile IoT[J].IEEE Transactions on Mobile Computing,2021,20(3),1110-1125.

[5] ALI S S D,ZHAO H P,KIM H.Mobile Edge Computing:A Promising Paradigm for Future Communication Systems[C]//TENCON 2018-2018 IEEE Region 10 Conference.Jeju:IEEE,2018:1183-1187.

[6] KWON G,PARK H.Joint User Association and Beamforming Design for Millimeter Wave UDN with Wireless Backhaul[J].IEEE Journal on Selected Areas in Communications,2019,37(12):2653-2668.

[7] CHEN S,ZHAO T,CHEN H H,et al.Network Densification and Path-loss Models Versus UDN Performance—A Unified Approach[J].IEEE Transactions on Wireless Communications,2021,20(7):4058-4071.

[8] 高月红,陈露.移动边缘计算中任务卸载研究综述[J].计算机科学,2022,49(S2):807-813.

[9] BI J,YUAN H T,DUANMU S F,et al.Energy-optimized Partial Computation Offloading in Mobile-edge Computing with Genetic Simulated-annealing-based Particle Swarm Optimization[J].IEEE Internet of Things,2021,8(5):3774-3785.

[10] DENG Y C,WANG P,LI L.Task Offloading for Mixed Cloud/Fog Computing in Vehicular Network Using Genetic Particle Swarm Optimization[C]//2021 4th International Conference on Information Communication and Signal Processing (ICICSP).Shanghai:IEEE,2021:489-494.

[11] KU Y J,BAIDYA S,DEY S.Adaptive Computation Partitioning and Offloading in Real-time Sustainable Vehicular Edge Computing[J].IEEE Transactions on Vehicular Technology,2021,70(12):13221-13237.

[12] NATH S,WU J X.Deep Reinforcement Learning for Dynamic Computation Offloading and Resource Allocation in Cache-assisted Mobile Edge Computing Systems[J].Intelligent and Converged Networks,2020,1(2):181-198.

[13] BAI W L,QIAN C.Deep Reinforcement Learning for Joint Offloading and Resource Allocation in Fog Computing[C]∥2021 IEEE 12th International Conference on Software Engineering and Service Science (ICSESS).Beijing:IEEE,2021:131-134.

[14] HAMDI M,HAMED B A,YUAN D,et al.Energy-efficient Joint Task Assignment and Power Control in Energy-harvesting D2D Offloading Communications[J].IEEE Internet of Things Journal,2022,9(8):6018-6031.

[15] WANG X,HAN Y B,SHI H T,et al.JOAGT:Latency-oriented Joint Optimization of Computation Offloading and Resource Allocation in D2D-assisted MEC System[J].IEEE Wireless Communications Letters,2022,11(9):1780-1784.

[16] DING Z G,XU D F,SCHOBER R,et al.Hybrid NOMA Offloading in Multi-user MEC Networks[J].IEEE Transactions on Wireless Communications,2022,21(7):5377-5391.

[17] TENG W,SHENG M,CHU X L,et al.Joint Optimization of Base Station Activation and User Association in Ultra Dense Networks Under Traffic Uncertainty[J].IEEE Transactions on Communications,2021,69(9):6079-6092.

[18] ZHANG R,CHENG P,CHEN Z,et al.Calibrated Bandit Learning for Decentralized Task Offloading in Ultra-dense Networks[J].IEEE Transactions on Communications,2022,70(4):2547-2560.

[19] LIN Z Q,GU B,ZHANG X,et al.Online Task Offloading in UDN:A Deep Reinforcement Learning Approach with Incomplete Information[C]//2022 IEEE Wireless Communications and Networking Conference (WCNC).Austin:IEEE,2022:1236-1241.

[20] LIU S J,WANG N.Collaborative Optimization Scheduling of Cloud Service Resources Based on Improved Genetic Algorithm[J].IEEE Access,2020,8:150878-150890.

[21] TRAN T X,POMPILI D.Joint Task Offloading and Resource Allocation for Multi-server Mobile-edge Computing Networks[J].IEEE Transactions on Vehicular Technology,2019,68(1):856-868.

基本信息:

DOI:

中图分类号:TN929.5

引用信息:

[1]唐煜星,王素红,韦睿等.超密集边缘计算网络下的任务卸载与资源分配[J].无线电工程,2023,53(09):2036-2045.

基金信息:

国家自然科学基金(61761007)~~

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文