长沙理工大学电气与信息工程学院;
在频分双工(Frequency Division Duplex, FDD)模式的大规模多输入多输出(Multiple Input Multiple Output, MIMO)系统中,针对资源有限的用户设备(User Equipment, UE)向基站(Base Station, BS)反馈信道状态信息(Channel State Information, CSI)反馈开销太大、反馈精度不足以及网络计算复杂度高的问题,提出一种基于深度可分离卷积和多尺度特征提取的轻量化CSI反馈方案。采用轻量的深度可分离卷积处理CSI,以降低压缩信息的损失,通过多尺度特征提取和残差学习进行恢复重建CSI。仿真结果表明,所提方案相对其他轻量化网络表现出较好的反馈精度。
176 | 0 | 31 |
下载次数 | 被引频次 | 阅读次数 |
[1] LOVE D J,HEATH R W,LAU V K N,et al.An Overview of Limited Feedback in Wireless Communication Systems[J].IEEE Journal on Selected Areas in Communications,2008,26(8):1341-1365.
[2] QIN Z J,FAN J C,LIU Y W,et al.Sparse Representation for Wireless Communications:A Compressive Sensing Approach[J].IEEE Signal Processing Magazine,2018,35(3):40-58.
[3] 魏泓安,单小军,郑柯,等.基于深度学习的SAR与光学影像配准方法综述[J].无线电工程,2021,51(12):1363-1372.
[4] WEN C K,SHIH W T,JIN S.Deep Learning for Massive MIMO CSI Feedback[J].IEEE Wireless Communications Letters,2018,7(5):748-751.
[5] LIANG P Z,FAN J C,SHEN W H,et al.Deep Learning and Compressive Sensing-based CSI Feedback in FDD Massive MIMO Systems[J].IEEE Transactions on Vehicular Technology,2020,69(8):9217-9222.
[6] CAI Q Y,DONG C,NIU K.Attention Model for Massive MIMO CSI Compression Feedback and Recovery[C]//2019 IEEE Wireless Communications and Networking Conference (WCNC).Marrakesh:IEEE,2019:1-5.
[7] CHAKMA A,ALAM S S,RAHMAN M H,et al.Deep Decoder Csinet for FDD Massive MIMO System[J].IEEE Wireless Communications Letters,2023,12(12):2073-2077.
[8] 陈发堂,戴东林,袁立.基于双重注意力机制的大规模MIMO系统CSI反馈[J].南京邮电大学学报(自然科学版),2022,42(6):10-18.
[9] LU Z L,WANG J T,SONG J.Multi-resolution CSI Feedback with Deep Learning in Massive MIMO System[C]//2020 IEEE International Conference on Communications (ICC).Dublin:IEEE,2020:1-6.
[10] JI S J,LI M.CLNet:Complex Input Lightweight Neural Network Designed for Massive MIMO CSI Feedback[J].IEEE Wireless Communications Letters,2021,10(10):2318-2322.
[11] LU Z L,ZHANG X D,HE H Y,et al.Binarized Aggregated Network with Quantization:Flexible Deep Learning Deployment for CSI Feedback in Massive MIMO Systems[J].IEEE Transactions on Wireless Communications,2022,21(7):5514-5525.
[12] TANG S P,XIA J J,FAN L S,et al.Dilated Convolution Based CSI Feedback Compression for Massive MIMO Systems[J].IEEE Transactions on Vehicular Technology,2022,71(10):11216-11221.
[13] HE K M,ZHANG X Y,REN S Q,et al.Deep Residual Learning for Image Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas:IEEE,2016:770-778.
[14] 陈清江,顾媛.基于多尺度深度可分离卷积的低照度图像增强算法[J].计算机工程与科学,2023,45(10):1830-1837.
[15] 黄平,闭吕庆,莫燕斌,等.基于多尺度特征融合的柑橘病虫害图像识别方法[J].无线电工程,2022,52(3):407-416.
[16] LIU L F,OESTGES C,POUTANEN J,et al.The COST 2100 MIMO Channel Model[J].IEEE Wireless Communications,2012,19(6):92-99.
[17] SANDLER M,HOWARD A,ZHU M L,et al.MobileNetV2:Inverted Residuals and Linear Bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Salt Lake City:IEEE,2018:4510-4520.
[18] HOWARD A G,ZHU M D,CHEN B,et al.MobileNets:Efficient Convolutional Neural Networks for Mobile Vision Applications[EB/OL].(2017-04-17)[2024-01-05].https://arxiv.org/abs/1704.04861.
[19] LIU X G,WU Y B,CHEN M,et al.A Double-channel Multiscale Depth-wise Separable Convolutional Neural Network for Abnormal Gait Recognition[J].IEEE Mathematical Biosciences and Engineering,2023,20(5):8049-8067.
基本信息:
DOI:
中图分类号:TN929.5
引用信息:
[1]刘受清,朱正发,申滔.基于多尺度特征提取的轻量化大规模MIMO系统CSI反馈[J].无线电工程,2025,55(01):175-183.
基金信息:
湖南省教育厅一般项目(19C0037); 长沙理工大学科研创新项目(CLSJCX23067)~~