nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2023, 03, v.53 644-656
基于深度学习的智能体轨迹预测文献综述
基金项目(Foundation): 黑龙江省自然科学基金(优青项目)(JJ2019YX0922); 基础科研项目(JCKY2020208B045)~~
邮箱(Email):
DOI:
摘要:

智能体的轨迹预测是人工智能领域中的热点之一,特别是在自动驾驶领域,预测智能体下一时间点的位置是自动驾驶辅助系统的关键任务。在智能体轨迹预测技术的基础上,根据建模方法的不同进行分类介绍,分别为循环神经网络(Recurrent Neural Network, RNN)、卷积神经网络(Convolutional Neural Network, CNN)、生成对抗网络(Generative Adversarial Network, GAN)和混合网络,同时分析了常见的经典模型的优缺点,归纳了当前常用公开的轨迹预测数据集和评价指标,比较了经典模型的算法性能,对智能轨迹预测方向进行了展望和总结。

Abstract:

The trajectory prediction of agents is one of the hot topics in the field of artificial intelligence, and predicting the agent's position at next time point is a crucial task of autonomous systems.Based on the agent trajectory prediction technology and according to the different modeling methods, Recursive Neural Network(RNN),Convolutional Neural Network(CNN),Generative Adversarial Network(GAN),and hybrid network are introduced.At the same time, the advantages and disadvantages of common classical models are analyzed.In addition, the current commonly-used public trajectory prediction datasets and evaluation metrics are summarized.Finally, the developing direction of intelligent trajectory prediction is prospected and summarized.

参考文献

[1] GULZAR M,MUHAMMAD Y,MUHAMMAD N.A Survey on Motion Prediction of Pedestrians and Vehicles for Autonomous Driving [J].IEEE Access,2021,9:137957-137969.

[2] SIGHENCEA B I,STANCIU R I,C?LEANU C D.A Review of Deep Learning-based Methods for Pedestrian Trajectory Prediction [J].Sensors,2021,21(22):7543.

[3] LEFèVRE S,VASQUEZ D,LAUGIER C.A Survey on Motion Prediction and Risk Assessment for Intelligent Vehicles [J].ROBOMECH Journal,2014,1(1):1-14.

[4] ALAHI A,GOEL K,RAMANATHAN V,et al.Social LSTM:Human Trajectory Prediction in Crowded Spaces [C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas:IEEE,2016:961-971.

[5] ZYNER A,WORRALL S,NEBOT E.A Recurrent Neural Network Solution for Predicting Driver Intention at Unsignalized Intersections [J].IEEE Robotics and Automation Letters,2018,3(3):1759-1764.

[6] ZYNER A,WORRALL S,NEBOT E.Naturalistic Driver Intention and Path Prediction Using Recurrent Neural Networks [J].IEEE Transactions on Intelligent Transportation Systems,2020,21(4):1584-1594.

[7] ALTCHé F,LA FORTELLE A.An LSTM Network for Highway Trajectory Prediction [C]// 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC).Yokohama:IEEE,2017:353-359.

[8] 孟宪伟,唐进君,王喆.考虑换道意图的LSTM-AdaBoost车辆轨迹预测模型[J].计算机工程与应用,2022,58(13):280-287.

[9] MA Y,ZHU X,ZHANG S,et al.Traffic Predict:Trajectory Prediction for Heterogeneous Traffic-agents [J/OL].(2019-04-09)[2022-06-10].https://arxiv.org/abs/1811.02146v1.

[10] DING W,SHEN S.Online Vehicle Trajectory Prediction Using Policy Anticipation Network and Optimization-based Context Reasoning [C]// 2019 International Conference on Robotics and Automation (ICRA).Montreal:IEEE,2019:9610-9616.

[11] DEO N,TRIVEDI M M.Multi-modal Trajectory Prediction of Surrounding Vehicles with Maneuver Based LSTMs [C]// 2018 IEEE Intelligent Vehicles Symposium (IV).Changshu:IEEE,2018:1179-1184.

[12] KAWASAKI A,SEKI A.Multimodal Trajectory Predictions for Urban Environments Using Geometric Relationships Between a Vehicle and Lanes [C]// 2020 IEEE International Conference on Robotics and Automation (ICRA).Paris:IEEE,2020:9203-9209.

[13] XING Y,LV C,CAO D.Personalized Vehicle Trajectory Prediction Based on Joint Time-series Modeling for Connected Vehicles [J].IEEE Transactions on Vehicular Technology,2020,69(2):1341-1352.

[14] DAI S,LI L,LI Z.Modeling Vehicle Interactions via Modi-fied LSTM Models for Trajectory Prediction [J].IEEE Access,2019,7:38287-38296.

[15] DING W,CHEN J,SHEN S.Predicting Vehicle Behaviors over an Extended Horizon Using Behavior Interaction Network [C]// 2019 International Conference on Robotics and Automation (ICRA).Montreal:IEEE,2019:8634-8640.

[16] JIANG R,XU H,GONG G,et al.Spatial-temporal Attentive LSTM for Vehicle-trajectory Prediction [J].ISPRS International Journal of Geo-Information,2022,11(7):354.

[17] YAN S,XIONG Y,LIN D.Spatial Temporal Graph Convolutional Networks for Skeleton-based Action Recognition [J/OL].(2018-01-25)[2022-06-10].https://arxiv.org/abs/1801.07455.

[18] HADDAD S,WU M,WEI H,et al.Situation-aware Pedestrian Trajectory Prediction with Spatio-Temporal Attention Model [J/OL].(2019-02-13)[2022-06-10].https://arxiv.org/abs/1902.05437v1.

[19] SALZMANN T,IVANOVIC B,CHAKRAVARTY P,et al.Trajectron++:Dynamically-feasible Trajectory Forecasting with Heterogeneous Data [J/OL].(2021-01-13)[2022-06-10].https://arxiv.org/abs/2001.03093.

[20] HUANG Y,DU J,YANG Z,et al.A Survey on Trajectory-prediction Methods for Autonomous Driving [J].IEEE Transactions on Intelligent Vehicles,2022,7(3):652-674.

[21] DJURIC N,RADOSAVLJEVIC V,CUI H,et al.Short-term Motion Prediction of Traffic Actors for Autonomous Driving Using Deep Convolutional Networks [J/OL].(2020-03-04)[2022-06-10].https://arxiv.org/abs/1808.05819v2.

[22] LEE N,CHOI W,VERNAZA P,et al.DESIRE:Distant Future Prediction in Dynamic Scenes with Interacting Agents [C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu:IEEE,2017:336-345.

[23] CUI H,RADOSAVLJEVIC V,CHOU F C,et al.Multi-modal Trajectory Predictions for Autonomous Driving Using Deep Convolutional Networks [C]// 2019 International Conference on Robotics and Automation (ICRA).Montreal:IEEE,2019:2090-2096.

[24] MARCHETTI F,BECATTINI F,SEIDENARI L,et al.MANTRA:Memory Augmented Networks for Multiple Trajectory Prediction [C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Seattle:IEEE,2020:7143-7152.

[25] WANG R,CUI Y,SONG X,et al.Multi-information-based Convolutional Neural Network with Attention Mechanism for Pedestrian Trajectory Prediction[J].Image and Vision Computing,2021,107:1-10.

[26] BRAZIL G,LIU X.M3D-RPN:Monocular 3D Region Proposal Network for Object Detection [C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV).Seoul:IEEE,2019:9286-9295.

[27] MOHAMED A,QIAN K,ELHOSEINY M,et al.Social-STGCNN:A Social Spatio-Temporal Graph Convolutional Neural Network for Human Trajectory Prediction [C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Seattle:IEEE,2020:14424-14432.

[28] ZHANG C,BERGER C,DOZZA M.Social-IWSTCNN:A Social Interaction-weighted Spatio-Temporal Convolutional Neural Network for Pedestrian Trajectory Prediction in Urban Traffic Scenarios [C]// 2021 IEEE Intelligent Vehicles Symposium (IV).Nagoya:IEEE,2021:1515-1522.

[29] LU Y,WANG W,HU X,et al.Vehicle Trajectory Prediction in Connected Environments via Heterogeneous Context-aware Graph Convolutional Networks[J/OL].(2022-05-24)[2022-07-20].https://ieeexplore.ieee.org/document/9781338.

[30] GUPTA A,JOHNSON J,LI F F,et al.Social GAN:Socially Acceptable Trajectories with Generative Adversarial Networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:2255-2264.

[31] SADEGHIAN A,KOSARAJU V,SADEGHIAN A,et al.SoPhie:An Attentive GAN for Predicting Paths Compliant to Social and Physical Constraints [C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach:IEEE,2019:1349-1358.

[32] KOSARAJU V,SADEGHIAN A,MARTíN-MARTíN R,et al.Social-BiGAT:Multimodal Trajectory Forecasting Using Bicycle-GAN and Graph Attention Networks [J/OL].(2019-07-17)[2022-06-10].https://arxiv.org/abs/1907.03395.

[33] AMIRIAN J,HAYET J B,PETTRé J.Social Ways:Learning Multi-modal Distributions of Pedes-trian Trajectories with GANs [C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Long Beach:IEEE,2019:2964-2972.

[34] FANG F,ZHANG P,ZHOU B,et al.Atten-GAN:Pedestrian Trajectory Prediction with GAN Based on Attention Mechanism[J].Cognitive Computation,2022,14:2296-2305.

[35] ZHONG Z,LUO Y,LIANG W.STGM:Vehicle Trajectory Prediction Based on Generative Model for Spatial-Temporal Features [J].IEEE Transactions on Intelligent Transportation Systems,2022,23(10):18785-18793.

[36] RASOULI A,KOTSERUBA I,KUNIC T,et al.PIE:A Large-scale Dataset and Models for Pedestrian Intention Estimation and Trajectory Prediction [C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV).Seoul:IEEE,2019:6262-6271.

[37] XIE G,SHANGGUAN A,FEI R,et al.Motion Trajectory Prediction Based on a CNN-LSTM Sequential Model [J].Science China Information Sciences,2020,63(11):1-21.

[38] XUE H,HUYNH D Q,REYNOLDS M.SS-LSTM:A Hier-archical LSTM Model for Pedestrian Trajectory Prediction [C]// 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).Lake Tahoe:IEEE,2018:1186-1194.

[39] EIFFERT S,LI K,SHAN M,et al.Probabilistic Crowd GAN:Multimodal Pedestrian Trajectory Prediction Using a Graph Vehicle-pedestrian Attention Network [J].IEEE Robotics and Automation Letters,2020,5(4):5026-5033.

[40] DEO N,TRIVEDI M M.Convolutional Social Pooling for Vehicle Trajectory Prediction [C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).Salt Lake City:IEEE,2018:1468-1476.

[41] ZHAO T,XU Y,MONFORT M,et al.Multi-agent Tensor Fusion for Contextual Trajectory Prediction [C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach:IEEE,2019:12126-12134.

[42] LI L,PAGNUCCO M,SONG Y.Graph-based Spatial Transformer with Memory Replay for Multi-future Pedestrian Trajectory Prediction [C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).New Orleans:IEEE,2022:2231-2241.

[43] ZHANG E,MASOUD N,BANDEGI M,et al.Step Attention:Sequential Pedestrian Trajectory Prediction [J].IEEE Sensors Journal,2022,22(8):8071-8083.

[44] PELLEGRINI S,ESS A,SCHINDLER K,et al.You'll Never Walk Alone:Modeling Social Behavior for Multi-target Tracking [C]// 2009 IEEE 12th International Con-ference on Computer Vision.Kyoto:IEEE,2009:261-268.

[45] LERNER A,CHRYSANTHOU Y,LISCHINSKI D.Crowds by Example [J].Computer Graphics Forum:Journal of the European Association for Computer Graphics,2007,26(3):655-664.

[46] 李琳辉,周彬,任威威,等.行人轨迹预测方法综述[J].智能科学与技术学报,2021,3(4):399-411.

[47] KRAJEWSKI R,BOCK J,KLOEKER L,et al.The highD Dataset:A Drone Dataset of Naturalistic Vehicle Trajectories on German Highways for Validation of Highly Automated Driving Systems [C]// 2018 21st International Conference on Intelligent Transportation Systems (ITSC).Maui:IEEE,2018:2118-2125.

[48] CAESAR H,BANKITI V,LANG A H,et al.nuScenes:A Multimodal Dataset for Autonomous Driving [C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Seattle:IEEE,2020:11618-11628.

[49] COIFMAN B,LI L.A Critical Evaluation of the Next Generation Simulation (NGSIM) Vehicle Trajectory Dataset [J].Transportation Research Part B:Methodological,2017,105:362-377.

[50] ROBICQUET A,SADEGHIAN A,ALAHI A,et al.Learning Social Etiquette:Human Trajectory Understanding in Crowded Scenes [C]// European Conference on Computer Vision.Beijing:Springer,2016:549-565.

[51] KOTSERUBA I,RASOULI A,TSOTSOS J K.Joint Attention in Autonomous Driving (JAAD) [J/OL].(2016-09-15)[2022-06-10].https://arxiv.org/pdf/1609.04741.pdf.

[52] GEIGER A,LENZ P,URTASUN R.Are We Ready for Autonomous Driving?The KITTI Vision Benchmark Suite [C]// 2012 IEEE Conference on Computer Vision and Pattern Recognition.Providence:IEEE,2012:3354-3361.

[53] QUEHL J,HU H,TA? ? ?,et al.How Good is My Prediction?Finding a Similarity Measure for Trajectory Prediction Evaluation [C]// 2017 IEEE 20th Interna-tional Conference on Intelligent Transportation Systems (ITSC).Yokohama:IEEE,2017:1-6.

[54] RUDENKO A,PALMIERI L,HERMAN M,et al.Human Motion Trajectory Prediction:A Survey[J].The International Journal of Robotics Research,2020,39(8):895-935.

基本信息:

DOI:

中图分类号:U463.6;TP18

引用信息:

[1]章璐璐,李思照.基于深度学习的智能体轨迹预测文献综述[J].无线电工程,2023,53(03):644-656.

基金信息:

黑龙江省自然科学基金(优青项目)(JJ2019YX0922); 基础科研项目(JCKY2020208B045)~~

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文