一些谐振系统象许多物理系统一样,受高电平激励时,也呈现非线性特性。这种非线性导致谐振频率随激励功率而变化(幅——频效应)并造成相位和振幅响应失真,随着这些效应由此而产生是两个或多个稳定状态、谐波以及分谐波及滞后现象,最终形成可能稳定状态——无秩态。本文对高Q的和低Q的谐振器两种情况,研究了分谐波的产生阳无秩态的形成,苜先提出了这些非线性系统模式,然后给出了石英晶体谐振器(高Q系统)和锁相环(低Q系统)两种实际系统的测量结果。
7 | 0 | 9 |
下载次数 | 被引频次 | 阅读次数 |
[1] F. L.Walis, A.F. Wafnwrlqht, Measurement of the short-term stability of quartz resonators and ths Implications for quartz oscilator design and applacations, IEEE Trans. Instrum. Meas., IM-24, P.15(1975)
[2] J.J.Gagnepain, Fundamentar noise studies of quartz crystal resonators, Freq 30th Ann. Freq.Cont.Symp., p.84 (1976)
[3] I.IGaInepain,J.Uebersfeld,1/f noise in quartz crystal re- sonators,let syrup on 1/f fluctuations,p.173-118,Tokyo(1977).
[4] J.J.Gagnepain et al, Relation between 1/f noise and Q-factor in quartz resonators atroom and low temperatures, first theoretical interpretation, 35th Ann. Freq. Cont. Symp., 1981
[5] y, Noguchi, y. Teramachi, F.Musha, 1/f fluctuations of a quartz crystal oscillator,proc.35th Ann. Freq. Cont. Symp., p.48 (1981)
[6] J.J.Gagnepain,F. L.Wall,to be published
[7] S.A Hubertson, J.p. Crotchfield, Chaotic states ofannarmonic systems in ceiiodic fields,phys. Rev. Letteis, 43, no23, P.1473 (1979) .
[8] M.DHumieres, M.Bearley, B.Hubermenn,A. Libchaber,Chatic states and rcutes to chaos in thecfor ed pendulom, Glnzton Lab.Report 3429, Stanfoford University (1982)
基本信息:
DOI:
中图分类号:
引用信息:
[1]华斌赋.谐振器内的无秩态与异常噪声[J].无线电工程,1987(03):96-99+89.
基金信息: