nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2019, 11, v.49;No.366 939-944
一种嵌入射频指纹的半监督辐射源识别方法
基金项目(Foundation): 国家自然科学基金资助项目(61271272)
邮箱(Email):
DOI:
摘要:

对于非协作通信场景下辐射源识别(SEI)问题,基于人工射频指纹特征(Radio Frequency Fingerprints,RFF)的识别方式准确率不高,基于深度学习的方法又对训练数据量有过高的要求。为了克服该问题,提出一种结合了人工射频指纹特征的基于贝叶斯卷积神经网络(CNN)的半监督SEI算法,将一个回归拟合信号双谱的直方图特征的CNN嵌入一个SEI的贝叶斯CNN中,并通过基于模糊度的半监督学习方法进一步降低算法对标签训练集的依赖性。在模拟数据集和真实数据集中的实验结果表明,在标签训练集规模为500~4 500条数据时,提出的方法比端到端的卷积神经网络识别方法的识别率提高了5%~20%。

Abstract:

For specific emitter identification problem in the scenario of non-cooperative communication,the accuracy of the identification method based on the artificial radio frequency fingerprints(RFF) feature is not high enough,and the requirements for the training data size of deep learning based method are too high.In order to overcome this problem,a new type of semi-supervised emitter identification algorithm based on Bayesian CNN combined with artificial RFF feature is proposed in this paper,the CNN of a histogram feature of the regression fitting signal bispectrum is embedded in a Bayesian CNN identified by the emitter,and the dependence of the algorithm on the label training set is further reduced by the fuzziness-based semi-supervised learning method.The experimental results in the simulated dataset and the real dataset show that the identification rate of the proposed method is 5%~20% higher than that of the end-to-end convolutional neural network identification method when the size of the label training set is 500~4 500.

参考文献

[1] POLAK A C,GOECKEL D L.Identification of Wireless Devices of Users Who Actively Fake Their RF Fingerprints with Artificial Data Distortion[J].IEEE Trans.Wireless Commun.,2015,14(11):5889-5899.

[2] CHOE H C,POOLE C E,ANDREA M Y,et al.Novel Identification of Intercepted Signals from Unknown Radio Transmitters[C]//Wavelet Applications II,International Society for Optics and Photonics,1995(2491):504-518.

[3] 蔡忠伟,李建东.基于双谱的通信辐射源个体识别[J].通信学报,2007,28(2):75-79.

[4] OROSCO E,DIEZ P,LACIAR E,et al.On the Use of High-order Cumulant and Bispectrum for Muscular-Activity Detection[J].Biomedical Signal Processing and Control,2015(18):325-333.

[5] SHIEH C S,LIN C T.A Vector Neural Network for Emitter Identification[J].IEEE Transactions on Antennas and Propagation,2002,50(8):1120-1127.

[6] 周东青,王玉冰,王星,等.基于深度限制波尔兹曼机的辐射源信号识别[J].国防科技大学学报,2016,38(6):136-141.

[7] MERCHANT K,REVAY S,STANTCHEV G,et al.Deep Learning for RF Device Fingerprinting in Cognitive Communication Networks[J].IEEE Journal of Selected Topics in Signal Processing,2018,12(1):160-167.

[8] JOHNSON R T,JOHNSON D W.Active Learning:Cooperation in the Classroom[J].The Annual Report of Educational Psychology in Japan,2008(47):29-30.

[9] FRüHWIRTH-SCHNATTER S.Data Augmentation and Dynamic Linear Models[J].Journal of Time Series Analysis,1994,15(2):183-202.

[10] SALAMON J,BELLO J P.Deep Convolutional Neural Networks and Data Augmentation for Environmental Sound Classification[J].IEEE Signal Processing Letters,2017,24(3):279-283.

[11] BUNTINE W L,WEIGEND A S.Bayesian Back-propagation[J].Complex Systems,1991,5(6):603-643.

[12] GRAVES A.Practical Variational Inference for Neural Networks[C]//Advances in Neural Information Processing Systems,2011:2348-2356.

[13] BLUNDELL C,CORNEBISE J,KAVUKCUOGLU K,et al.Weight Uncertainty in Neural Networks[J].arXiv Preprint arXiv:1505.05424,2015.

[14] TU Y,LIN Y,WANG J,et al.Semi-supervised Learning with Generative Adversarial Networks on Digital Signal Modulation Classification[J].Computer,Mater.Contin,2018,55(2):243-254.

[15] GAL Y,GHAHRAMANI Z.Dropout as a Bayesian Approximation:Representing Model Uncertainty in Deep Learning[C]//International Conference on Machine Learning,2016:1050-1059.

[16] GAL Y,GHAHRAMANI Z.Bayesian Convolutional Neural Networks with Bernoulli Approximate Variational Inference[J].arXiv preprint arXiv:1506.02158,2015.

[17] ZHANG J,WANG F,DOBRE O A,et al.Specific Emitter Identification via Hilbert-Huang Transform in Single-hop and Relaying Scenarios[J].IEEE Trans.Inf.Forensics Security,2016,11(6):1192-1205.

[18] ASHFAQ R A R,WANG X Z,HUANG J Z,et al.Fuzziness Based Semi-supervised Learning Approach for Intrusion Detection System[J].Information Sciences,2017(378):484-497.

基本信息:

DOI:

中图分类号:TN911.6;TP18

引用信息:

[1]姚君宇,许小东.一种嵌入射频指纹的半监督辐射源识别方法[J].无线电工程,2019,49(11):939-944.

基金信息:

国家自然科学基金资助项目(61271272)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文