nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2025, 09, v.55 1785-1790
基于无人机平台的高速公路违法行为识别
基金项目(Foundation): 中国人民公安大学刑事科学技术双一流创新研究专项(2023SYL06)~~
邮箱(Email):
DOI:
摘要:

针对高速公路交通违法行为识别中存在的目标尺度小、动态特征敏感度不足及多目标空间关系建模薄弱等问题,提出一种基于改进YOLOv8的无人机智能识别算法——GDsec_YOLOv8。通过引入卷积块注意力模块(Convolutional Block Attention Module, CBAM)双重注意力机制增强模型对小目标(分心驾驶、车辆违规变道等)的特征提取能力,结合Wise-IoU损失函数优化边界框回归过程,有效提升了检测精度与收敛效率。实验表明,改进后的GDsec_YOLOv8模型在参数量为28.9 MB时,mAP@0.50和mAP@0.50:0.95分别达到99.73%和93.45%,较主流算法性能提升显著。算法以无人机动态巡检为数据源,对所涉及的目标违法行为进行识别,实现地空联动执法,为低空经济与交通治理协同发展提供了技术支撑。

Abstract:

To solve the problems of small target scale, insufficient dynamic feature sensitivity and weak modeling of multi-target spatial relationship in the identification of highway traffic violations, a UAV intelligent identification algorithm, GDsec_YOLOv8, is proposed based on the improvement of YOLOv8. The feature extraction capability of the model for small targets(distracted driving, vehicle lane changing violations, etc.) is enhanced by introducing the Convolutional Block Attention Module(CBAM) dual attention mechanism, and the bounding box regression process is optimized by combining the Wise-IoU loss function, which effectively improves detection accuracy and convergence efficiency. Experimental results demonstrate that the improved GDsec_YOLOv8 model reaches 99.73% and 93.45% respectively for mAP@0.50 and mAP@0.50:0.95 when the number of parameters is 28.9 MB, significantly outperforming mainstream algorithms in performance. The algorithm utilizes drone patrols as its data source to identify target traffic violations, enabling ground-air coordinated law enforcement and providing technical support for the synergistic development of the low-altitude economy and traffic governance.

参考文献

[1] 郝涛涛,王旭飞,王鹏辉,等.基于迁移学习的无人机对地面目标识别研究[J].航空计算技术,2023,53(5):44-47.

[2] GE Z,LIU S T,WANG F.YOLOX:Exceeding YOLO Series in 2021 [EB/OL].(2021-07-18)[2025-02-10].https://arxiv.org/abs/2107.08430.

[3] LI C Y,LI L L,JIANG H L,et al.YOLOv6:A Single-stage Object Detection Framework for Industrial Applications [EB/OL].(2022-09-07)[2025-02-10].https://arxiv.org/abs/2209.02976.

[4] LIU Z,GAO X H,WAN Y,et al.An Improved YOLOv5 Method for Small Object Detection in UAV Capture Scenes[J].IEEE Access,2023,11:14365-14374

[5] 张珺仪,郭楠.基于YOLOv5的无人机目标图像识别[J].电视技术,2022,46(8):51-55.

[6] 程换新,乔庆元,骆晓玲,等.基于改进YOLOv8的无人机航拍图像目标检测算法[J].无线电工程,2024,54(4):871-881.

[7] 黄灿.基于模型微调的空中无人机小样本目标识别方法[J].计算机测量与控制,2024,32(1):268-274.

[8] 康啸辉,邓植元,丁志晗,等.基于无人机影像的车辆行人轻量化检测方法[C]//第十七届全国信号和智能信息处理与应用学术会议.重庆:[出版者不详],2023:358-365.

[9] 范博淦,王淑青,陈开元.基于改进YOLOv8的航拍无人机小目标检测模型[J/OL].计算机应用,1-11[2025-04-02].http://kns.cnki.net/kcms/detail/51.1307.tp.20241017.1040.004.html.

[10] 任安虎,李宇飞,陈洋.改进YOLOv8的高速公路交通异常事件检测[J].激光杂志,2025,46(1):84-90.

[11] WANG C Y,BOCHKOVSKIY A,LIAO H Y M.YOLOv7:Trainable Bag-of-freebies Sets New State-of-the-art for Realtime Object Detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Vancouver:IEEE,2023:7464-7475.

[12] 黄晨.基于深度学习的交通违法行为识别技术研究[D].南京:东南大学,2022.

[13] 陈佳,余成波,王士彬,等.基于CBAM改进YOLOv7的电力设备红外图像分类检测[J].红外技术,2025,47(1):72-80.

[14] 朱哲维,李珂,匡璐,等.基于YOLOv5-CBAM模型的划痕智能检测[J].无线电工程,2024,54(12):2789-2799.

[15] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:Towards Real-time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,39(6):1137-1149.

[16] 张秀再,沈涛,许岱.基于改进YOLOv8算法的遥感图像目标检测[J].激光与光电子学进展,2024,61(10):298-308.

[17] 刘善明,余新阳,欧阳魁.面向筛面复杂背景的矿山异物视觉检测方法[J].计算机技术与发展,2024,34(5):196-204.

[18] 范昊飞.基于深度学习的多目标同步分类关键技术研究[D].南京:南京邮电大学,2023.

[19] 徐倩倩,李昕.轻量级的YOLOv7钢丝绳缺陷检测算法[J/OL].重庆工商大学学报(自然科学版),1-14[2025-04-02].http://kns.cnki.net/kcms/detail/50.1155.n.20241218.1010.004.html.

[20] 岳永恒,雷文朋.基于改进的CycleGAN和YOLOv8联合雾天道路环境感知算法[J].华南理工大学学报(自然科学版),2025,53(2):48-57.

基本信息:

DOI:

中图分类号:U495;TP391.41;D631.5

引用信息:

[1]马星煜,胡晓光,胡保发,等.基于无人机平台的高速公路违法行为识别[J].无线电工程,2025,55(09):1785-1790.

基金信息:

中国人民公安大学刑事科学技术双一流创新研究专项(2023SYL06)~~

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文