nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 08, v.54 1944-1953
基于多感知融合的遥感影像检测算法
基金项目(Foundation): 四川省科技计划项目(2023YFS0371); 四川省智慧旅游研究基地项目(ZHZJ22-03)~~
邮箱(Email):
DOI:
摘要:

针对遥感影像复杂背景和小目标检测困难的问题,提出了一种基于多感知融合的检测算法YOLO-GT。为了提升特征图中小目标的特征信息,设计了包含3种感知机制的检测头Adaptive Scale-Aware Dynamic Head(ASADH);引入轻量级上采样算子Content-Aware ReAssembly of Features (CARAFE),解决语义信息丢失问题,提升特征金字塔网络性能;为进一步优化模型的训练速度和定位精度,采用了Wise-IoU作为损失函数。实验结果在DIOR数据集上显示,模型精度达90.4%,比原算法提高2.1%。这些改进有效提高了复杂背景下遥感影像小目标的检测性能。

Abstract:

To deal with the problem of complex background and small target detection in remote sensing images, a multi-sensory fusion-based detection algorithm YOLO-GT is proposed.In order to improve the feature information of small targets in the feature map, a detection head Adaptive Scale-Aware Dynamic Head(ASADH) which contains three kinds of sensing mechanisms is designed; at the same time, a lightweight up-sampling operator Content-Aware ReAssembly of Features(CARAFE)is introduced to solve the problem of semantic information loss and improve the performance of the feature pyramid network; then Wise-IoU is adopted as the loss function in order to further optimize the training speed and localization accuracy of the model.The experimental results on the DIOR dataset show that the model accuracy reaches 90.4%,which is 2.1% higher than the original algorithm.These improvements effectively enhance the performance of small targets detection in remote sensing images under complex backgrounds.

参考文献

[1] SERMANET P,EIGEN D,ZHANG X,et al.OverFeat:Integrated Recognition,Localization and Detection Using Convolutional Networks[EB/OL].(2013-12-21) [2023-08-26].https://arxiv.org/abs/1312.6229.

[2] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal Loss for Dense Object Detection[C]//2017 IEEE International Conference on Computer Vision (ICCV).Venice:IEEE,2017:2999-3007.

[3] REDMON J,DIVVALA S,GIRSHICK R,et al.You Only Look Once:Unified,Real-time Object Detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas:IEEE,2016:779-788.

[4] REDMON J,FARHADI A.YOLO9000:Better,Faster,Stronger[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:6517-6525.

[5] JOSEPH R,ALI F.YOLOv3:An Incremental Improvement[EB/OL].(2018-04-08) [2023-08-26].https://arxiv.org/abs/1804.02767.

[6] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:Optimal Speed and Accuracy of Object Detection[EB/OL].(2020-04-23) [2023-08-26].https://arxiv.org/abs/2004.10934.

[7] HE K M,ZHANG X Y,REN S Q,et al.Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916.

[8] GIRSHICK R.Fast R-CNN[C] //International Conference on Computer Vision.Santiago:IEEE,2015:176-183.

[9] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:Towards Real-time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.

[10] 张寅,朱桂熠,施天俊,等.基于特征融合与注意力的遥感图像小目标检测[J].光学学报,2022,42(24):140-150.

[11] 马梁,苟于涛,雷涛,等.基于多尺度特征融合的遥感图像小目标检测[J].光电工程,2022,49(4):49-65.

[12] LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature Pyramid Networks for Object Detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu:IEEE,2017:936-944.

[13] 张上,张岳,王恒涛,等.轻量化无人机遥感图像小目标检测算法[J].无线电工程,2023,53(10):2329-2336.

[14] ZHANG Y F,REN W,ZHANG Z,et al.Focal and Efficient IOU Loss for Accurate Bounding Box Regression[EB/OL].(2022-07-16)[2023-08-10].https://arxiv.org/abs/2101.08158.

[15] ZHANG H Y,WANG Y,DAYOUB F,et al.VarifocalNet:An IoU-aware Dense Object Detector[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Nashville:IEEE,2021:8510-8519.

[16] WANG J Q,CHEN K,XU R,et al.CARAFE:Content-aware ReAssembly of FEatures[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV).Seoul:IEEE,2019:3007-3016.

[17] TONG Z J,CHEN Y H,XU Z W,et al.Wise-IoU:Bounding Box Regression Loss with Dynamic Focusing Mechanism[EB/OL].(2023-04-08)[2023-08-11].https://arxiv.org/abs/2301.10051.

[18] DAI X Y,CHEN Y P,XIAO B,et al.Dynamic Head:Unifying Object Detection Heads with Attentions[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Nashville:IEEE,2021:7369-7378.

[19] DAI J F,QI H Z,XIONG Y W,et al.Deformable Convolutional Networks[C]//2017 IEEE International Conference on Computer Vision (ICCV).Venice:IEEE,2017:764-773.

[20] 周鹏成,黎远松,石睿,等.基于改进YOLOv5n的轻量化光学遥感图像目标检测[J].无线电工程,2023,53(7):1544-1553.

基本信息:

DOI:

中图分类号:TP751;TP18

引用信息:

[1]何中良,赵良军,宁峰等.基于多感知融合的遥感影像检测算法[J].无线电工程,2024,54(08):1944-1953.

基金信息:

四川省科技计划项目(2023YFS0371); 四川省智慧旅游研究基地项目(ZHZJ22-03)~~

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文