1,942 | 56 | 6 |
下载次数 | 被引频次 | 阅读次数 |
对于利用传统A*算法规划的路径存在搜索效率低下、节点冗余且不平滑及转弯易靠近障碍物等缺点,基于全向移动机器人提出了一种改进A*算法与动态窗口法(Dynamic Window Approach, DWA)相融合的实时路径规划方法。在传统A*算法的评价函数中加入环境中障碍物信息和父节点到目标点的代价信息,提高路径搜索效率;对当前节点扩展时进行安全检测,优化节点扩展方向;基于安全阈值提取路径关键点,优化搜索路径;将优化后的关键点作为DWA算法的临时目标点,将2种算法融合规划出一条基于全局最优的圆滑曲线路径。实验结果表明,基于融合导航算法规划的路径能安全快速地躲避动态障碍物。
Abstract:Considering the disadvantages of traditional A* algorithm,such as low search efficiency,more redundant nodes and approaching obstacles easily,a real-time path planning method combining improved A * algorithm with Dynamic Window Approach(DWA) is proposed. In the evaluation function of traditional A* algorithm,the obstacle information in the environment and the cost information from the parent node to the target point are added to improve the efficiency of path search. The security threshold value is introduced to detect the safety of the current node when expanding the current node. The search path is optimized by extracting the key points of the search path based on the security threshold value. Finally,the key point is taken as the temporary target point of DWA algorithm,and the two algorithms are fused to plan a smooth curve path based on global optimization. The experimental results show that the path planning based on fusion navigation algorithm can avoid dynamic obstacles safely and quickly.
[1] PATLE B K, GANESH B L, PANDEY A, et al. A Review:On Path Planning Strategies for Navigation of Mobile Robot[J]. Defence Technology,2019,15(4):582-606.
[2]马国梁,卢浩东,舒强,等.定位导航空投救援无人机的设计[J].无线电工程,2019,49(3):224-228.
[3] ADAMU P I, OKAGBUE H I, OGUNTUNDE P E. Fast and Optimal Path Planning Algorithm(FAOPPA)for a Mobile Robot[J]. Wireless Personal Communications,2019,106(2):577-592.
[4]刘公绪.共融机器人导航技术综述[J].无线电工程,2020,50(12):1007-1015.
[5] DIJKSTRA E W. A Note on Two Problems in Connexion with Graphs[J]. Numerische Mathematik, 1959, 1(1):269-271.
[6] HART P E,NILSSON N J,RAPHAEL B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths[J]. IEEE Transactions on Systems Science&Cybernetics,1968,4(2):100-107.
[7] KUSWADI S,SANTOSO J W,TAMARA M N,et al. Application SLAM and Path Planning Using A-star Algorithm for Mobile Robot in Indoor Disaster Area[C]∥2018International Electronics Symposium on Engineering Technology and Applications(IES-ETA). Bali:IEEE, 2018:270-274.
[8] KARAMAN S,WALTER M R,PEREZ A,et al. Anytime Motion Planning Using the RRT*[C]∥2011 IEEE International Conference on Robotics and Automation. Shanghai:IEEE,2011:1478-1483.
[9]郑凯林,韩宝玲,王新达.基于改进TEB算法的阿克曼机器人运动规划系统[J].科学技术与工程,2020,20(10):3997-4003.
[10]朱浩亮,陈一新,詹茁芃,等.基于人工势场的UAV编队避障研究[J].科技创新与应用, 2021, 11(28):35-38.
[11] CHANG L,SHAN L,JIANG C,et al. Reinforcement Based Mobile Robot Path Planning with Improved Dynamic Window Approach in Unknown Environment[J]. Autonomous Robots,2021,45(1):51-76.
[12] LIN Z,YUE M,CHEN G,et al. Path Planning of Mobile Robot with PSO-based APF and Fuzzy-based DWA Subject to Moving Obstacles[J]. Transactions of the Institute of Measurement and Control,2022,44(1):121-132.
[13]张庆,刘旭,彭力,等.融合JPS和改进A*算法的移动机器人路径规划[J].计算机科学与探索,2021,15(11):2233-2240.
[14]王维,裴东,冯璋.改进A*算法的移动机器人最短路径规划[J].计算机应用,2018,38(5):1523-1526.
[15]陈若男,文聪聪,彭玲,等.改进A*算法在机器人室内路径规划中的应用[J].计算机应用,2019,39(4):1006-1011.
[16]柴红杰,李建军,姚明.改进的A*算法移动机器人路径规划[J].电子器件,2021,44(2):362-367.
[17]王永雄,田永永,李璇,等.穿越稠密障碍物的自适应动态窗口法[J].控制与决策,2019,34(5):927-936.
[18]常新新,胡为,姬书得,等.基于改进动态窗口法的移动机器人避障研究[J].组合机床与自动化加工技术,2021(7):33-36.
[19]王子静,陈熙源.基于改进A*和DWA的无人艇路径规划算法[J].传感技术学报,2021,34(2):249-254.
[20]曹毅,周轶,张亚宾.基于优化A*和DWA算法的移动机器人避障路径规划[J].机床与液压,2020,48(24):246-252.
[21]冉东可,彭富伦,李红光.基于A*算法的路径规划研究综述[J].电子技术与软件工程,2020(24):11-12.
基本信息:
DOI:
中图分类号:TP242;TP18
引用信息:
[1]张振,张华良,邓永胜等.融合改进A~*算法与DWA算法的机器人实时路径规划[J].无线电工程,2022,52(11):1984-1993.
基金信息:
国家自然科学基金(91648204)~~