505 | 7 | 64 |
下载次数 | 被引频次 | 阅读次数 |
在图优化框架的基础上,设计多传感器融合方案和有效的优化方法,提出一套具有鲁棒性的定位与建图(Simultaneous Localization and Mapping, SLAM)方案,能够有效应对室内外复杂环境。进一步发展激光-视觉后端建图融合方法,构建具备全新地图表达形式的点云网格化地图。同时使用低成本传感器,设计实现基于多传感器融合的高性能低成本背包扫描系统,整体完成在未知环境中的自我定位和稠密建图,且在低性能CPU设备上将长时间运动带来的每100 m的轨迹误差平均降低至厘米级。提出的基于多传感器融合方案,在精度、算力消耗上能够匹配现有主流方案,对获取各种环境条件下的系统准确定位结果和丰富的空间信息具有重要意义。
Abstract:Based on the graph optimization framework, a multi-sensor fusion approach and an effective optimization method are designed, and a multi-sensor fusion Simultaneous Localization and Mapping(SLAM) scheme with robust localization effect is proposed, which can effectively deal with complex indoor and outdoor environments.The laser-vision back-end mapping fusion method is further developed to construct a point cloud grid map with a new form of map expression.At the same time, low-cost sensors are used to design and implement a high-performance low-cost backpack scanning system based on multi-sensor fusion, which can complete the self-localization and dense mapping in unknown environment as a whole, and reduce the track error per 100 meters caused by long-time movement to centimeter level on the low-performance CPU device.The multi-sensor fusion scheme proposed can match the existing mainstream schemes in terms of accuracy and computing power consumption, and is of great significance for obtaining accurate positioning results and rich spatial information of the system under various environmental conditions.
[1] SHIN Y S,PARK Y S,KIM A.Direct Visual Slam Using Sparse Depth for Camera-LiDAR System[C]//2018 IEEE International Conference on Robotics and Automation (ICRA).Brisbane:IEEE,2018:5144-5151.
[2] ZHANG J,SINGH S.LOAM:LiDAR Odometry and Mapping in Real-time[C]//Robotics:Science and Systems.Rome:[s.n.],2014:1-9.
[3] SHAN T X,ENGLOT B.LeGO-LOAM:Lightweight and Ground-optimized LiDAR Odometry and Mapping on Variable Terrain[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Madrid:IEEE,2018:4758-4765.
[4] SHAN T X,ENGLOT B,MEYERS D,et al.LIO-SAM:Tightly-coupled LiDAR Inertial Odometry via Smoothing and Mapping[C]//2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Las Vegas:IEEE,2020:5135-5142.
[5] DEBEUNNE C,VIVET D.A Review of Visual-LiDAR Fusion Based Simultaneous Localization and Mapping[J].Sensors,2020,20(7):2068.
[6] REIJGWART V,MILLANE A,OLEYNIKOVA H,et al.Voxgraph:Globally Consistent,Volumetric Mapping Using Signed Distance Function Submaps [J].IEEE Robotics and Automation Letters,2019,5(1):227-234.
[7] SHAN T,ENGLOT B,RATTI C,et al.LVI-SAM:Tightly-coupled LiDAR-visual-inertial Odometry via Smoothing and Mapping[C]//2021 IEEE International Conference on Robotics and Automation(ICRA).Xi’an:IEEE,2021:5692-5698.
[8] 陈首彬.激光 LiDAR/视觉融合的 SLAM(LV-SLAM)关键技术研究 [D].武汉:武汉大学,2020.
[9] 庞帆.激光雷达惯导耦合的里程计与建图方法研究 [D].北京:北京建筑大学,2020.
[10] 翁潇文,李迪,柳俊城.基于图优化的二维激光SLAM研究[J].自动化与仪表,2019,34(4):31-35.
[11] DELLAERT F,KAESS M.Factor Graphs for Robot Perception[M].Boston:Now Foundations and Trends,2017.
[12] CHEN S B,ZHOU B D,JIANG C H,et al.A LiDAR/Visual Slam Backend with Loop Closure Detection and Graph Optimization[J].Remote Sensing,2021,13(14):2720.
[13] YAN M,WANG J,LI J,et al.Loose Coupling Visual-LiDAR Odometry by Combining VISO2 and LOAM[C]//2017 36th Chinese Control Conference (CCC).Dalian:IEEE,2017:6841-6846.
[14] CHAI Z Q,SUN Y X,XIONG Z H.A Novel Method for LiDAR Camera Calibration by Plane Fitting[C]//2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).Auckland:IEEE,2018:286-291.
[15] GRAETER J,WILCZYNSKI A,LAUER M.LIMO:LiDAR-monocular Visual Odometry[C]//2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Madrid:IEEE,2018:7872-7879.
[16] NIEBNER M,ZOLLHOFER M,IZADI S,et al.Real-time 3D Reconstruction at Scale Using Voxel Hashing[J].ACM Transactions on Graphics (TOG),2013,32(6):169.
[17] ZHAO P J,LI R,SHI Y J,et al.Design of 3D Reconstruction System on Quadrotor Fusing Lidar and Camera[C]//2020 39th Chinese Control Conference (CCC).Shenyang:IEEE,2020:3984-3989.
[18] SHIN Y S,PARK Y S,KIM A.DVL-SLAM:Sparse Depth Enhanced Direct Visual-LiDAR Slam[J].Autonomous Robots,2020,44(2):115-130.
[19] KOIDE K,MIURA J,MENEGATTI E.A Portable 3D LIDAR-based System for Long-term and Wide-area People Behavior Measurement[J].International Journal of Advanced Robotic Systems,2019,16(2):1-16.
[20] STURM J,ENGELHARD N,ENDRES F,et al.A Benchmark for the Evaluation of RGB-D SLAM Systems[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.Vilamoura-Algarve:IEEE,2012:573-580.
基本信息:
DOI:
中图分类号:TP212.9
引用信息:
[1]郝睿,李瑞,史莹晶等.基于多传感器融合的系统自我定位与地图重建[J].无线电工程,2024,54(01):206-215.
基金信息: