402 | 0 | 35 |
下载次数 | 被引频次 | 阅读次数 |
针对无人机三维航迹规划寻优问题,提出一种改进的人工蜂群(Artificial Bee Colony, ABC)算法。通过引入淘汰策略提升采蜜蜂全局搜索能力;结合粒子群算法自我认知和社会认知思想优化新蜜源产生方式,提升算法局部开发能力;将无效开采数量作为新的影响因素更新跟随蜂蜜源选择概率,进一步提升算法效率。在构建的三维任务场景数字地图上的多项实验结果表明,所提算法精度高、收敛速度快,具有良好的航迹规划寻优效果。
Abstract:An improved Artificial Bee Colony(ABC) algorithm is proposed for the optimization problem of 3D trajectory planning of unmanned aerial vehicles. The global search ability of foraging bees is enhanced by introducing an elimination strategy. The new nectar source generation is optimized by combining the self-cognition and social cognition ideas of particle swarm algorithm to enhancing the local development ability of the algorithm. In addition, in order to further improve the efficiency of the algorithm, the invalid mining quantity is used as a new influencing factor to update the nectar source selection probability of the following bees. Multiple experimental results on the constructed 3D scene digital map show that the proposed algorithm has high accuracy, fast convergence speed, and good trajectory planning optimization effect.
[1] 田周泰,柴梦娟,刘广怡,等.基于改进人工鱼群算法的无人机三维航迹规划[J].信息工程大学学报,2024,25(1):80-84.
[2] 刘君兰,张文博,姬红兵,等.无人机集群路径规划算法研究综述[J].航天电子对抗,2022,38(1):9-12.
[3] KARABOGA D,GORKEMLI B,OZTURK C,et al.A Comprehensive Survey:Artificial Bee Colony Algorithm and Applications [J].Artificial Intelligence Review,2014,42:21-57.
[4] 朱金磊,袁晓兵,裴俊.基于改进人工蜂群算法的灾害场景下路径规划[J].中国科学院大学学报,2023,40(3):397-405.
[5] 李铁骊,王文双,刘海洋,等.基于改进人工蜂群算法的船舶管路路径寻优算法分析[J].中国舰船研究,2024,19(2):1-12.
[6] 郝辉,李雪瑞,张雨森.人工蜂群算法及其在路径寻优问题上的应用[J].火力与指挥控制,2023,48(3):57-66.
[7] FAN W,LUO W H,WANG M,et al.A 3D Path Planning Method Based on Improved Artificial Bee Colony Algorithm [C]//2022 37th Youth Academic Annual Conference of Chinese Association of Automation (YAC).Beijing:IEEE,2022:561-566.
[8] LIU Y Y,YANG M M,LI Y S,et al.An Artificial Bee Colony Algorithm Improved by a Search Strategy Based on Adaptive Selection [C]//2023 3rd International Conference on Neural Networks,Information and Communication Engineering (NNICE).Guangzhou:IEEE,2023:581-585.
[9] 朱范炳,张翔.基于多维更新的改进人工蜂群算法[J].智能计算机与应用,2022,12(8):142-144.
[10] 陈帅华,赵洋.基于改进人工蜂群算法的HOV三维路径规划[J].舰船科学技术,2023,45(11):76-82.
[11] WU A,CHEN H W,WANG C Z,et al.Study on Dynamic Equilibrium Factor based on Gauss-Cauchy Distribution in Artificial Bee Colony Algorithm [C]// 2021 16th International Conference on Computer Science & Education (ICCSE).Lancaster:IEEE,2021:607-611.
[12] 王昊昱.基于改进人工蜂群算法的无人机航迹规划方法研究[D].郑州:中原工学院,2023.
[13] KARABOGA D.An Idea Based on Honey Bee Swarm for Numerical Optimization[R/OL].(2005-10-06)[2024-06-02].https://www.docin.com/p-773016019.html.
[14] 李保胜.三维环境下无人机路径规划算法研究[D].天津:天津职业技术师范大学,2023.
[15] 陈明强,李奇峰,冯树娟,等.基于改进粒子群算法的无人机三维航迹规划[J].无线电工程,2023,53(2):394-400.
[16] 马军.基于改进人工蜂群算法的多无人机航迹规划技术研究[D].南京:南京航空航天大学,2021.
[17] CHEN Y Y,WU H S,XIAO R B.Improved Wolf Pack Algorithm for UAV Path Planning Problem [J].International Journal of Swarm Intelligence Research,2022,13(1):294-315.
[18] 唐熙,王海宝,罗强.基于改进蚁群算法的无人机三维路径规划[J].农业装备与车辆工程,2023,61(10):88-92.
基本信息:
DOI:
中图分类号:TP18;V279;V249
引用信息:
[1]韩子硕,张莉,范喜全等.基于改进人工蜂群算法的无人机三维航迹规划[J].无线电工程,2025,55(01):196-203.
基金信息: