374 | 0 | 14 |
下载次数 | 被引频次 | 阅读次数 |
针对变电站安全监控场景下的行人识别,纯视觉传感器目标检测极易受到光照条件和物体遮挡的影响,存在误检和精度不高等问题,主流雷达视觉融合目标检测网络存在实时性差、精度低的问题,提出了一种以YOLOv5作为主干网络的多尺度雷视融合目标检测算法,实验结果显示该算法在平均精度均值(mean Average Precision, mAP)0.5:0.95和帧率(Frames Per Second, FPS)上均显著优于其他主流目标检测算法。在YOLOv5结构上,额外增添了一条毫米波雷达点云多尺度特征融合分支。雷达点云RGB图像首先通过通道压缩(Channel Block Squeeze, CBS)、跨阶局部网络(Cross Stage Partial Network, CSP)模块提取特征之后,继续通过卷积注意力模块(Convolutional Block Attention Module, CBAM)和最大池化层对雷达点云信息进行不同层次的特征提取,使用空间注意力融合模块的改进对雷达点云特征和视觉特征进行3次多尺度特征融合。实验分析表明,所提算法mAP0.5:0.95比原始YOLOv5网络有显著提升,FPS也远优于目前主流雷视融合算法。
Abstract:In the context of substation safety monitoring, target detection with pure visual sensor is easily affected by illumination conditions and object occlusion, resulting in problems such as false detection and low accuracy. The mainstream radar vision fusion target detection network has poor real-time performance and low accuracy. A multi-scale radar vision fusion target detection algorithm using YOLOv5 as the backbone network is proposed, the experimental results also show that the algorithm is significantly better than other mainstream target detection algorithms in both mean Average Precision(mAP)0.5:0.95 and Frame Per Second(FPS). On the structure of YOLOv5, an additional branch of millimeter-wave radar point clouds multi-scale feature fusion is added. The radar point clouds RGB image extracts features firstly through the Channel Block Squeeze(CBS) and Cross Stage Partial Network(CSP) modules, and then continues to extract different levels of features from the radar point clouds information through the Convolutional Block Attention Module(CBAM) and maximum pooling layer. The improved spatial attention fusion module is used to perform the three-time multi-scale feature fusion of radar point clouds features and visual features. Experimental analysis shows that the mAP0.5:0.95 of the algorithm proposed is significantly improved compared to the original YOLOv5 network, and the FPS is also far superior to the current mainstream radar vision fusion algorithm.
[1] 黄茂.面向智慧灯杆的目标定位技术研究与实现[D].成都:电子科技大学,2021.
[2] CHARLES R Q,SU H,MO K C,et al.Pointnet:Deep Learning on Point Sets for 3D Classification and Segmentation[C]//Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:77-85.
[3] ZHOU Y,TUZEL O.VoxelNet:End-to-End Learning for Point Cloud Based 3D Object Detection[EB/OL].(2017-11-17)[2024-02-13].https://arxiv.org/abs/1711.06396.
[4] LANG A H,VORA S,CAESAR H,et al.PointPillars:Fast Encoders for Object Detection from Point Clouds[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach:IEEE,2019:12689-12697.
[5] GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition.Columbus:IEEE,2014:580-587.
[6] 陈国平,程秋菊,黄超意,等.采用深度卷积神经网络方法的毫米波图像目标检测 [J].电讯技术,2019,59(10):1121-1126.
[7] CHANG S,ZHANG Y F,ZHANG F,et al.Spatial Attention Fusion for Obstacle Detection Using mmWave Radar and Vision Sensor [J].Sensors,2020,20(4):956.
[8] 陈正浩,邓月明,谢竞,等.改进SAF-FCOS的雷视融合目标检测算法 [J].计算机工程与应用,2024,60(14):209-218.
[9] TIAN Z,SHEN C H,CHEN H,et al.FCOS:Fully Convolutional One-stage Object Detection[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV).Seoul:IEEE,2019:9626-9635.
[10] 邵延华,张铎,楚红雨,等.基于深度学习的YOLO目标检测综述 [J].电子与信息学报,2022,44(10):3697-3708.
[11] 高振海,王竣,佟静,等.车载毫米波雷达对前方目标的运动状态估计 [J].吉林大学学报(工学版),2014,44(6):1537-1544.
[12] 刘志峰,王建强,李克强.具有鲁棒特性的车载雷达有效目标确定方法 [J].清华大学学报(自然科学版),2008(5):875-878.
[13] 孙宁,秦洪懋,张利,等.基于多传感器信息融合的车辆目标识别方法 [J].汽车工程,2017,39(11):1310-1315.
[14] 王宝锋,齐志权,马国成,等.一种基于雷达和机器视觉信息融合的车辆识别方法 [J].汽车工程,2015,37(6):674-678.
[15] 杨志军,昌新萌,丁洪伟.基于改进YOLOv4-Tiny的交通车辆实时目标检测 [J].无线电工程,2023,53(11):2635-2644.
[16] 赵振兵,吕雪纯,王帆帆,等.基于改进YOLOx-S的输电线路上金具检测方法 [J].无线电工程,2023,53(11):2664-2672.
[17] 周耀威,孔令军,李慧刚,等.基于通道注意力机制与金字塔池化的包裹破损检测算法 [J].无线电工程,2023,53(11):2626-2634.
[18] WOO S,PARK J,LEE J Y,et al.CBAM:Convolutional Block Attention Module[C]//Proceedings of the European Conference on Computer Vision (ECCV).Munich:Springer,2018:3-19.
[19] 陈州全,黄俊,郑元杰.基于注意力机制的毫米波雷达和视觉融合目标检测算法 [J].电讯技术,2023,63(10):1574-1581.
[20] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:Towards Real-time Object Detection with Region Proposal Networks [J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,39(6):1137-1149
[21] LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single Shot Multibox Detector[C]//Proceedings of the Computer Vision-ECCV 2016.Amsterdam:Springer,2016:21-37.
基本信息:
DOI:
中图分类号:TN957.52;TP183;TM63
引用信息:
[1]陈亮,李敏,高杰等.基于雷视融合YOLOv5变电站行人检测[J].无线电工程,2024,54(11):2718-2732.
基金信息:
国家电网四川省电力公司科技项目(521917230001)~~