84 | 0 | 19 |
下载次数 | 被引频次 | 阅读次数 |
为了解决物联网(Internet of Things, IoT)终端数据高速回传问题,提出了基于栅格化方形面阵的轨道角动量(Orbital Angular Momentum, OAM)高速回传方法。论证了栅格化正方形面阵可以分解为多圈4阵元均匀圆环阵(Uniform Circular Array, UCA),并给出了馈电方法与具体实施步骤。基于此,进一步推导了采用栅格化方形面阵进行基于多圈UCA的OAM多模复用通信模型,并系统地分析了复用和分集增益。仿真结果表明,所提方法相对于传统方法有极大的信道容量和误码率(Bit Error Rate, BER)性能提升。所提方法只需收发方形面阵中心对准即可,无需信道估计,极大地降低了复杂度;此外,超高的分集增益可以极大地降低发射功率。因此,所提方法尤其适用于IoT终端节点这类低功耗、低复杂度的发射机,为IoT数据高速回传提供了高效的解决方案。
Abstract:In order to solve the problem of high-speed data return from Internet of Things(IoT) terminals, an Orbital Angular Momentum(OAM) high-speed data return method based on Grid Square Array(GSA) is proposed. It is demonstrated that GSA can be decomposed into multi-loop 4-element Uniform Circular Array(UCA). The feeding methods and the specific implementation steps are then given. Based on this, the construction process of the OAM based multi-mode multiplexing communication model of multi-UCA implemented by GSA is derived, and the multiplexing and diversity gain is systematically analyzed. The simulation results show that compared with the traditional methods, the proposed method can greatly improve the channel capacity and Bit Error Rate(BER) performance. When using the proposed method, only the alignment of the centers of receiving and transmitting GSA is required, and there is no need for channel estimation, which greatly reduces the complexity; besides, the ultra-high diversity gain also greatly reduces the transmission power. Therefore, the proposed method is especially suitable for low power and low complexity transmitters such as IoT terminals, and provides an efficient solution for high-speed data return of IoT.
[1] 刘霞,姜元山,张光伟.5G和物联网技术应用发展综述 [J].物联网技术,2022,12(5):60-61.
[2] 何立民.从智能电网、物联网到泛在电力物联网 [J].单片机与嵌入式系统应用,2022,22(4):3-5.
[3] HEJAZI H,RAJAB H,CINKLER T,et al.Survey of Platforms for Massive IoT[C]//2018 IEEE International Conference on Future IoT Technologies (Future IoT).Eger:IEEE,2018:1-8.
[4] DARYANAVARD H,HARIFI A.UAV Path Planning for Data Gathering of IoT Nodes:Ant Colony or Simulated Annealing Optimization[C]//2019 3rd International Conference on Internet of Things and Applications (IoT).Isfahan:IEEE,2019:1-4.
[5] XU X B,ZHAO H,YAO H P,et al.A Blockchain-enabled Energy-efficient Data Collection System for UAV-assisted IoT [J].IEEE Internet of Things Journal,2021,8(4):2431-2443.
[6] CHEN R,ZHOU H,MORETTI M,et al.Orbital Angular Momentum Waves:Generation,Detection,and Emerging Applications [J].IEEE Communications Surveys & Tutorials,2020,22(2):840-868.
[7] YAN Y,XIE G D,LAVERY M P J,et al.High-capacity Millimetre-wave Communications with Orbital Angular Momentum Multiplexing [J].Nature Communications,2014,5:4876.
[8] SASAKI H,LEE D,FUKUMOTO H,et al.Experiment on Over-100-Gbps Wireless Transmission with OAM-MIMO Multiplexing System in 28-GHz Band[C]//2018 IEEE Global Communications Conference (GLOBECOM).Abu Dhabi:IEEE,2018:1-6.
[9] FABRIZIO T,ELETTRA M,ANNA S,et al.Encoding Many Channels on the Same Frequency Through Radio Vorticity:First Experimental Test[J].New Journal of Physics,2012,14(3):033001.
[10] HUI X N,ZHENG S L,CHEN Y,et al.Multiplexed Millimeter Wave Communication with Dual Orbital Angular Momentum(OAM)Mode Antennas[J].Scientific Reports,2015,5(1):10148.
[11] ZHANG C,ZHAO Y F.Orbital Angular Momentum Nondegenerate Index Mapping for Long Distance Transmission [J].IEEE Transactions on Wireless Communications,2019,18(11):5027-5036.
[12] THIDé B,THEN H,SJ?HOLM J,et al.Utilization of Photon Orbital Angular Momentum in the Low-frequency Radio Domain [J].Physical Review Letters,2007,99(8):087701.
[13] YU W,ZHOU B,BU Z Y,et al.UCA Based OAM Beam Steering with High Mode Isolation [J].IEEE Wireless Communications Letters,2022:11(5):977-981.
[14] CHEN R,YANG W,XU H,et al.A 2-D FFT-Based Transceiver Architecture for OAM-OFDM Systems with UCA Antennas[J].IEEE Transactions on Vehicular Technology,2018,67(6):5481-5485.
[15] YUAN Y Q,ZHANG Z Y,CANG J,et al.Capacity Analysis of UCA-based OAM Multiplexing Communication System[C]//2015 International Conference on Wireless Communications & Signal Processing (WCSP).Nanjing:IEEE,2015:1-5.
[16] CHEN R,LONG W X,WANG X D,et al.Multi-mode OAM Radio Waves:Generation,Angle of Arrival Estimation and Reception with UCAs [J].IEEE Transactions on Wireless Communications,2020,19(10):6932-6947.
[17] YU W,ZHOU B,BU Z,et al.Analyze UCA Based OAM Communication from Spatial Correlation [J].IEEE Access,2020,8:194590-194600.
[18] 王泳鋆,杨志红,贾蒙蒙.智能传感器在物联网中的应用探究 [J].中国新通信,2022,24(4):74-76.
[19] 田飞燕,陈晓明,钟财军,等.6G蜂窝物联网的大规模接入技术 [J].物联网学报,2020,4(1):92-103.
[20] 范平志,李里,陈欢,等.面向大规模物联网的随机接入:现状、挑战与机遇 [J].通信学报,2021,42(4):1-21.
[21] EDFORS O,JOHANSSON A J.Is Orbital Angular Momentum (OAM) Based Radio Communication an Unexploited Area?[J].IEEE Transactions on Antennas & Propagation,2012(2):1126-1130.
[22] TSE D,VISWANATH P.Fundamentals of Wireless Communication [M].北京:人民邮电出版社,2005.
基本信息:
DOI:
中图分类号:TP391.44;TN929.5
引用信息:
[1]田源,高树国,孙路等.基于模态复用的物联网高速数据回传研究[J].无线电工程,2023,53(01):175-181.
基金信息:
国网河北省电力有限公司科技项目(kj2021-019)~~