128 | 0 | 42 |
下载次数 | 被引频次 | 阅读次数 |
为验证GNSS兼容频点定位性能,给出了顾及系统间偏差的PPP模型,推导了各GNSS兼容频点卫星UCD改正模型。基于全球范围内的MGEX测站,从5个方面开展了7种定位模式下,动态PPP性能分析。结果表明:(1) BDS-3兼容频点在3个单系统测试中最优,定位率、PDOP及可用卫星数分别为97.61%、1.94和9,Galileo次之,GPS最差;(2) BDS-3与其他系统的联合模式要优于其它系统间的联合,并且在GNSS联合定位中,BDS-3贡献最大;(3) BDS-3/Galileo联合模式收敛时间最快和收敛精度最高,E、N、U各方向收敛时间分别为22.70、7.99、11.17 min,收敛精度分别为1.6、1.2、4.9 cm;(4) BDS-3与其他系统联合均可显著加快收敛时间和提高收敛精度。可明显看出,BDS-3在GNSS兼容互操作发展方向扮演着重要的角色。
Abstract:In order to verify the positioning performance of GNSS compatible frequency, a PPP model considering the inter system bias was proposed, and a UCD correction model was derived for each GNSS compatible frequency of all satellites. Based on MGEX stations worldwide, the dynamic PPP performance under seven positioning modes is compared and analyzed from five aspects. The results show that,(1) BDS-3 is the best compatible frequency among the three single systems, and the positioning rate, PDOP and number of available satellites are 97.61%, 1.94 and 9, respectively, followed by Galileo and GPS;(2) The combined mode of BDS-3 and other systems is better than other combined systems, and in GNSS joint positioning, BDS-3 contributes the most;(3) The convergence time of BDS-3/Galileo combined mode is the fastest and the convergence accuracy is the highest. The convergence time of E, N and U directions is 22.70, 7.99 and 11.17 min, and the convergence accuracy is 1.6, 1.2 and 4.9 cm, respectively.(4) The combination of BDS-3 and other systems can significantly accelerate the convergence time and improve the convergence accuracy. Therefore, it is clear that BDS-3 plays an important role in the development of GNSS compatibility and interoperability.
[1] PADMA B,KAI B.Performance Analysis of Dual-frequency Receiver Using Combinations of GPS L1,L5,and L2 Civil Signals[J].Journal of Geodesy,2019,93(3):437-447.
[2] CHEN Y H,JUANG J C,LORENZO D S,et al.Real-time Dual-frequency (L1/L5) GPS/WAAS Software Receiver[J/OL].[2022-10-20].https://web.stanford.edu/group/scpnt/gpslab/pubs/papers/Chen_IONGNSS_2011_Real-TimeDualFrequency_L1L5_GPSWAASSoftwareReceiver_Final.pdf.
[3] 王新来,唐宇鹏.Galileo双频精密单点定位精度分析[J].测绘标准化,2022,38(1):18-21.
[4] 郭树人,蔡洪亮,孟轶男,等.北斗三号导航定位技术体制与服务性能[J].测绘学报,2019,48(7):810-821.
[5] 侯阳飞,陈俊平,张益泽.BDS-3新频点(B1C+B2a)与GPS融合的PPP浮点解及固定解定位精度分析[C]//第十三届中国卫星导航年会论文集—S04星轨道与精密定位.北京:[出版者不详],2022:194-199.
[6] 李增科,陈昭冰,刘赞,等.融合BDS-3新信号的GNSS动态PPP模糊度固定[J].中国矿业大学学报,2022,51(6):1222-1231.
[7] 岳帆,黄观文,解世超,等.北斗三号B1C/B2a新频点信号数据质量和精密单点定位性能评估[J/OL].(2022-05-26)[2022-10-29].https://doi.org/10.14188/j.2095-6045.2021805.
[8] WANG E,YANG T,WANG Z,et al.Performance Evaluation of Precise Point Positioning for BeiDou-3 B1c/B2a Signals in the Global Range[J].Sensors,2021,21(17):5780.
[9] CHEN H,LIU X X,JIANG W P,et al.Preliminary Analysis and Evaluation of BDS-2/BDS-3 Precise Point Positioning[J].Advances in Space Research,2021,68(10):4113-4128.
[10] 孙大伟,艾孝军,贾小林,等.BDS/GNSS精密单点定位性能分析[J].大地测量与地球动力学,2022,42(11):1111-1116.
[11] 李树文,王潜心,武威.BDS-3单双频信号全球定位精度分析[J].测绘科学,2021,46(12):67-74.
[12] 林家乐,乔书波,李林阳.Galileo双频/三频精密单点定位性能分析[J].测绘科学技术学报,2019,36(6):576-581.
[13] 赵琳,李宏宇,侯毅男,等.多系统混频非差非组合精密单点定位方法研究[J].导航定位与授时,2021,8(5):96-102.
[14] 赵兴旺,葛玉龙.GPS/Galileo实时精密单点定位精度分析[J].大地测量与地球动力学,2019,39(8):816-820.
[15] 李建刚,李红慧,柴祥君,等.GPS、BDS、GPS+BDS精密单点定位精度评估[J].测绘通报,2021(9):124-129.
[16] 卢福康,余学祥,肖星星,等.BDS-2/BDS-3/GPS/Galileo双频精密单点定位精度分析与评价[J].全球定位系统,2022,47(5):35-44.
[17] 宋美慧,柴艳菊,张宝成.GPS/BDS系统间偏差特性及其对PPP影响分析[J].导航定位学报,2020,8(6):46-52.
[18] 陈秀德,刘惠,盛传贞,等.不同模式下BDS动态PPP精度分析[J/OL].(2022-08-22)[2022-10-29].http://kns.cnki.net/kcms/detail/10.1096.P.20220819.1608.002.html.
[19] 王进,杨元喜,张勤,等.多模GNSS融合PPP系统间偏差特性分析[J].武汉大学学报(信息科学版),2019,44(4):475-481.
[20] 顾嘉琛,宋传峰,田坤俊.顾及OSB改正的BDS-3新频点精密单点定位精度分析[J].大地测量与地球动力学,2023,43(1):18-22.
[21] 周锋.多系统GNSS非差非组合精密单点定位相关理论和方法研究[D].上海:华东师范大学,2018.
[22] 李方超.联合BDS-3/BDS-2/GPS的实时精密单点定位模型与算法研究[D].徐州:中国矿业大学,2021.
基本信息:
DOI:
中图分类号:TN967.1
引用信息:
[1]陈秀德,刘惠,惠沈盈等.GNSS兼容频点动态PPP性能分析[J].无线电工程,2023,53(05):1078-1085.
基金信息:
国家重点研发计划(2019YFC1511504); 中国电子科技集团公司信息科学研究院发展基金项目(BAX20684X010); 卫星导航与装备技术国家重点实验室开放基金项目(CEPNT-2018KF-13)~~