nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 09, v.54 2231-2239
一种频率可调的高增益OAM阵列天线设计
基金项目(Foundation): 国家自然科学基金(62061038,62061039)~~
邮箱(Email):
DOI:
摘要:

为了拓宽通信系统的信道容量,设计了一种新型双环相控微带天线阵列。该天线阵列以同轴馈电的圆形石墨烯贴片作为阵元,内环包含8个阵元,外环包含16个阵元,均等间隔分布在一个同心圆上。仿真结果表明,双环轨道角动量(Orbital Angular Momentum,OAM)微带天线阵列通过调整相位分布,可以产生模态为l=0、l=±1、l=±2、l=±3、l=±4、l=±5的电磁涡旋波束,并且双环OAM微带天线阵列实现了比单环更高的增益,最高增益达到19.2 dBi。通过改变石墨烯的化学势,该天线可实现5.59~6.28 THz频率可调,为未来无线通信系统的容量提升和频谱利用率优化提供了一种新的选择。

Abstract:

In order to broaden the channel capacity of the communication system,a new type of dual-loop phased microstrip antenna array is designed. The antenna array uses coaxially fed circular graphene patches as the elements,with the inner ring containing 8 elements and the outer ring containing 16 elements,evenly spaced over a concentric circle. The simulation results show that the electromagnetic vortex beams with the modes l = 0,l = ±1,l = ±2,l = ±3,l = ±4 and l = ±5 can be generated by adjusting the phase distribution,and the dual loop Orbital Angular Momentum(OAM)microstrip antenna array achieves a higher gain than the single ring,with a maximum gain of 19. 2 dBi. At the same time,by changing the chemical potential of graphene,the antenna can achieve frequency tunable in the range of 5. 59 ~ 6. 28 THz,which provides a new option for capacity improvement and spectrum utilization optimization of wireless communication systems in the future.

参考文献

[1] LIU X Y,ZHU Y Z,XIE W X,et al. Generation of Plane Spiral Orbital Angular Momentum Waves by Microstrip Yagi Antenna Array[J]. IEEE Access,2020,8:175688-175696.

[2] XU J C,GUO Y X,YANG P Y,et al. Recent Progress on RF Orbital Angular Momentum Antennas[J]. Journal of Electromagnetic Waves and Applications,2020,34(3):275-300.

[3] YU S X,KOU N,JIANG J H,et al. Beam Steering of Orbital Angular Momentum Vortex Waves with Spherical Conformal Array[J]. IEEE Antennas and Wireless Propagation Letters,2021,20(7):1244-1248.

[4] ARIKAWA T,MORIMOTO S,TANAKA K. Focusing Light with Orbital Angular Momentum by Circular Array Antenna[J]. Optics express,2017,25(12):13728-13735.

[5] ZHAO M Y,GAO X L,XIE M T,et al. Generation of Coupled Radio Frequency Orbital Angular Momentum Beam with an Optical-controlled Circular Antenna Array[J].Optics Communications,2018,426:126-129.

[6] YIN Z P,ZHENG Q,GUO K,et al. Tunable Beam Steering,Focusing and Generating of Orbital Angular Momentum Vortex Beams Using High-order Patch Array[J]. Applied Sciences. 2019,9(15):2949.

[7] LIU Q,CHEN Z N,LIU Y A,et al. Circular Polarization and Mode Reconfigurable Wideband Orbital Angular Momentum Patch Array Antenna[J]. IEEE Transactions on Antennas and Propagation,2018,66(4):1796-1804.

[8]王艳妮,孙学宏,刘丽萍,等.一种毫米波UWB多模态OAM介质谐振器阵列天线[J].无线电工程,2023,53(2):439-448.

[9] LEI R T,LI S R,YANG Y,et al. Generating Orbital Angular Momentum Based on Circular Antenna Array with Filtering Characteristic[J]. International Journal of RF and Microwave Computer-Aided Engineering,2021,31(8):1-10.

[10]邱靓婕,李秀萍,郭晓斌,等.多波束涡旋电磁波反射阵天线设计[J].无线电工程,2022,52(2):274-278.

[11]MA H,LIU H W. Waveform Diversity Based Generation of Convergent Beam Carrying Orbital Angular Momentum[J]. IEEE Transactions on Antennas and Propagation,2020,68(7):5487-5495.

[12]GRANDE M,BIANCO V G,LANEVE D,et al. Gain and Phase Control in a Graphene-loaded Reconfigurable Antenna[J]. Applied Physics Letters,2019,115:133103.

[13]DASHTI M,CAREY D J. Graphene Microstrip Patch Ultrawide Band Antennas for THz Communications[J]. Advanced Functional Materials,2018,28(11):11705925.

[14]SAMANTA G,MITRA D. Wideband THz Antenna Using Graphene Based Tunable Circular Reactive Impedance Substrate[J]. Optik,2018,158:1080-1087.

[15]VISHWANATH,SAHANA B C,VARSHNEY G. Tunable Terahertz Dual-band Circularly Polarized Dielectric Resonator Antenna[J]. Optik,2022,253:168578.

[16]SHARMA T,VARSHNEY G,YADUVANSHI R S,et al.Obtaining the Tunable Band-notch in Ultrawideband THz Antenna Using Graphene Nanoribbons[J]. Optical Engineering,2020,59(4):047103.

[17]ELSHEAKH N D. Reconfigurable Frequency and Steerable Beam of Monopole Antenna Based on Graphene Pads[J]. International Journal of RF and Microwave Computer-Aided Engineering,2020,30(5):1-8.

[18]QIN F,LI L H,LIU Y,et al. A Four-mode OAM Antenna Array with Equal Divergence Angle[J]. IEEE Antennas and Wireless Propagation Letters,2019,18(9):1941-1945.

[19]MENG Z K,SHI Y,WEI W Y,et al. Graphene-based Metamaterial Transmitarray Antenna Design for the Generation of Tunable Orbital Angular Momentum Vortex Electromagnetic Waves[J]. Optical Materials Express,2019,9(9):3709-3716.

[20]WANG Y N,SUN X L,LIU L P. A Concentric Array for Generating Multimode OAM Waves[J]. Journal of Communications and Information Networks,2022,7(3):324-332.

[21]WU J,HUANG Z X,REN X G. et al. Wideband Millimeter-wave Dual-mode Dual Circularly Polarized OAM Antenna Using Sequentially Rotated Feeding Technique[J]. IEEE Antennas and Wireless Propagation Letters,2020,19(8):1296-1300.

[22]ZHU Q B,XIAO X Z,YU L S,et al. Generation of Terahertz OAM Waves with Six Modes Based on Three-layer Z-shaped Reflective Metasurface[J]. Electronics,2023,12(13):2859.

基本信息:

DOI:

中图分类号:TN822

引用信息:

[1]刘洪顺,刘丽萍,孙学宏等.一种频率可调的高增益OAM阵列天线设计[J].无线电工程,2024,54(09):2231-2239.

基金信息:

国家自然科学基金(62061038,62061039)~~

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文