2,063 | 11 | 487 |
下载次数 | 被引频次 | 阅读次数 |
随着智能信息社会的不断演进以及智慧城市建设的推进,电子设备的定位准确性和可靠性需求日益突显,特别是在万物互联的背景下,对定位精度和定位质量的要求变得更加迫切。无源定位技术因隐蔽性强、功耗低、不易被感知与干扰等诸多优点被广泛应用于各个领域,尤其近年来,通感一体化(Integrated Sensing and Communication, ISAC)、机器学习、环境反向散射以及智能反射面的引入与发展,为无源定位在6G中的应用提供了新的契机。基于此,阐述了无源定位技术特点及分类;按照参数化的分类方式总结梳理无源定位方法及误差影响因素;讨论了多参数融合无源定位方案与优势;展望了无源定位技术在6G新愿景下典型的应用场景、潜在技术、挑战及未来研究方向。
Abstract:With the continuous evolution of the smart information society and the advancement of smart city construction, the demand for the accuracy and reliability of electronic device positioning is becoming increasingly prominent. Especially in the context of the Internet of Things, the requirements for positioning accuracy and quality have become more urgent. Passive localization technology, due to its strong concealment, low power consumption, and resistance to perception and interference, is widely applied in various fields. Especially in recent years, the introduction and development of Integrated Sensing and Communication(ISAC), machine learning, ambient backscattering and intelligent reflecting surfaces provide new opportunities for the application of passive positioning in 6G. Based on this, firstly the characteristics and classification of passive positioning technology are elaborated. Secondly, according to the parameterized classification method, the passive positioning method and the influencing factors of error are summarized and sorted out. Furthermore, the advantages of multi-parameter fusion passive localization schemes are discussed. Finally, the typical application scenarios, potential technologies, challenges and future research directions of passive positioning technology under the new vision of 6G are prospected.
[1]SHAKEEL A,LQBAL A,NAUMAN A,et al.6G Driven Vehicular Tracking in Smart Cities Using Intelligent Reflecting Surfaces[C]∥2023 IEEE 97th Vehicular Technology Conference.Florence:IEEE,2023:1-7.
[2]VU D N,DAO N N,WON D,et al.Potential Enabling Technologies for 6G Mobile Communication Networks:ARecent Review[C]∥2023 Fourteenth International Conference on Ubiquitous and Future Networks.Paris:IEEE,2023:631-635.
[3]吴癸周,郭福成,张敏.信号直接定位技术综述[J].雷达学报,2020,9(6):998-1013.
[4]6G Flagship.Key Drivers and Research Challenges for 6GUbiquitous Wireless Intelligence:6G Research Visions[EB/OL].[2024-03-20].https:∥oulurepo.oulu.fi/bitstream/handle/10024/36430/isbn978-952-62-2354-4.pdf?sequence=1&isAllowed=y.
[5]WANG C X,YOU X H,GAO X Q,et al.On the Road to6G:Visions,Requirements,Key Technologies,and Testbeds[J].IEEE Communications Surveys and Tutorials,2023,25(2):905-974.
[6]XIAO Z Q,ZENG Y.An Overview on Integrated Location and Communication Towards 6G[J].Science China Information Sciences,2022,65(3):131301:1-131301:46.
[7]SHI A R,SUN F Y,LI M L.An Exploration of Holographic Scenarios in 6G Networks[C]∥2022 10th International Conference on Information Systems and Computing Technology.Guilin:IEEE,2022:450-456.
[8]NDIAYE M,SALEY A M,NIANE K,et al.Future 6GCommunication Networks:Typical IoT Network Topology and Terahertz Frequency Challenges and Research Issues[C]∥2022 2nd International Conference on Innovative Research in Applied Science,Engineering and Technology.Meknes:IEEE,2022:1-5.
[9]CHUGUNOV A,PETUKHOV N,KULIKOV R.ToA Positioning Algorithm for TDoA System Architecture[C]∥2020 International Russian Automation Conference.Sochi:IEEE,2020:871-876.
[10]谢文武,袁婷,张海洋,等.基于智能反射表面的单站智能定位算法研究[J].无线电工程,2024,54(3):557-564.
[11]JIANG B,LU A N,YOU M Y,et al.A Single-observer Passive Location Algorithm Base on Weighted Least Squares Criterion[C]∥2022 IEEE 22nd International Conference on Communication Technology.Nanjing:IEEE,2022:1750-1754.
[12]WANG C,CHEN Z L,YAN Q F.Research on Single Station Passive Location Technology[C]∥2021 IEEE 6th International Conference on Signal and Image Processing.Nanjing:IEEE,2021:573-578.
[13]LI S H,HEDLEY M,BENGSTON K,et al.Passive Localization of Standard WiFi Devices[J].IEEE Systems Journal,2019,13(4):3929-3932.
[14]DERV I·OGˇLU I,YAVANOGˇLU U.Security Threats and Performance Evaluation of Ultra Wideband and Bluetooth Low Energy Technologies for Indoor Positioning[C]∥2021 International Conference on Information Security and Cryptology.Ankara:IEEE,2021:22-27.
[15]SASIKALA M,ATHENA J,RINI A S.Received Signal Strength Based Indoor Positioning with RFID[C]∥2021IEEE International Conference on RFID Technology and Applications.Delhi:IEEE,2021:260-263.
[16]KESKIN M F,SEZER A D,GECIZI S.Localization via Visible Light Systems[J].Proceedings of the IEEE,2018,106(6):1063-1088.
[17]任进,刘跃奇,于淼.基于注意力机制的室内可见光定位算法[J].无线电工程,2023,53(7):1612-1618.
[18]GENG X W,PENG R Q,LI M L,et al.A Lightweight Approach for Passive Human Localization Using an Infrared Thermal Camera[J].IEEE Internet of Things Journal,2022,9(24):24800-24811.
[19]SHARIAT M,KASTNER W.Authenticated UWB-based Positioning of Passive Drones[C]∥2023 IEEE 19th International Conference on Factory Communication Systems.Pavia:IEEE,2023:1-8.
[20]PAUL A S,WAN E A.RSSI-based Indoor Localization and Tracking Using Sigma-point Kalman Smoothers[J].IEEE Journal of Selected Topics in Signal Processing,2009,3(5):860-873.
[21]WU K S,XIAO J,YI Y W,et al.CSI-based Indoor Localization[J].IEEE Transactions on Parallel and Distributed Systems,2013,24(7):1300-1309.
[22]MAZUELAS S,BAHILLO A,LORENZO R M,et al.Robust Indoor Positioning Provided by Real-time RSSIValues in Unmodified WLAN Networks[J].IEEE Journal of Selected Topics in Signal Processing,2009,3(5):821-831.
[23]ZHAO X J,XIAO Z L,MARKHAM A,et al.Does BTLEMeasure up Against WiFi?A Comparison of Indoor Location Performance[C]∥European Wireless 2014;20th European Wireless Conference.Barcelona:IEEE,2014:1-6.
[24]TOUVAT F,POUJAUD J,NOURY N.Indoor Localization with Wearable RF Devices in 868MHz and 2.4GHz Bands[C]∥IEEE 16th International Conference on e-Health Networking,Applications and Services.Natal:IEEE,2014:136-139.
[25]FERNANDEZ-LIORCA D,QUINTERO R,PARRA I,et al.Comparison Between UHF RFID and BLE for Stereobased Tag Association in Outdoor Scenarios[C]∥20166th International Conference on IT Convergence and Security.Prague:IEEE,2016:1-5.
[26]SADOWSKI S,SPACHOS P.RSSI-based Indoor Localization with the Internet of Things[J].IEEE Access,2018,6:30149-30161.
[27]张洁颖,孙懋珩,王侠.基于RSSI和LQI的动态距离估计算法[J].电子测量技术,2007(2):142-145.
[28]程远国,耿伯英.基于高斯混合模型的无线局域网定位算法[J].计算机工程,2009,35(4):25-27.
[29]张铮,饶志训,黄志峰.无线传感器网络中RSSI滤波的若干处理办法[J].现代电子技术,2013,36(20):4-6.
[30]ALSMADI L,KONG X Y,SANDRASEGARAN K,et al.An Improved Indoor Positioning Accuracy Using Filtered RSSI and Beacon Weight[J].IEEE Sensors Journal,2021,21(16):18205-18213.
[31]LIU Y,LIANG T,SUN J.RSSI Localization Method for Mine Underground Based on RSSI Hybrid Filtering Algorithm[C]∥2017 IEEE 9th International Conference on Communication Software and Networks.Guangzhou:IEEE,2017:327-332.
[32]LEE B,HAM D,CHOI J,et al.Genetic Algorithm for Path Loss Model Selection in Signal Strength-based Indoor Localization[J].IEEE Sensors Journal,2021,21(21):24285-24296.
[33]HE S N,CHAN S H G.Wi-Fi Fingerprint-based Indoor Positioning:Recent Advances and Comparisons[J].IEEECommunications Surveys and Tutorials,2016,18(1):466-490.
[34]VO Q D,DE P.A Survey of Fingerprint-based Outdoor Localization[J].IEEE Communications Surveys and Tutorials,2016,18(1):491-506.
[35]DEEPESH P C,RATH R,TIWARY A,et al.Experiences with Using iBeacons for Indoor Positioning[C]∥Proceedings of the 9th India Software Engineering Conference.New York:ACM,2016:184-189.
[36]BIANCHI V,CIAMPOLINI P,DE MUNARI I.RSSI-based Indoor Localization and Identification for ZigBee Wireless Sensor Networks in Smart Homes[J].IEEETransactions on Instrumentation and Measurement,2019,68(2):566-575.
[37]FIGUERA C,MORA-JIMENEZ I,GUERRERO-CURIESESA,et al.Nonparametric Model Comparison and Uncertainty Evaluation for Signal Strength Indoor Location[J].IEEETransactions on Mobile Computing,2009,8(9):1250-1264.
[38]LI D,ZHANG B X,YAO Z,et al.A Feature Scaling Based k-nearest Neighbor Algorithm for Indoor Positioning System[C]∥2014 IEEE Global Communications Conference.Austin:IEEE,2014:436-441.
[39]GENTILE C,ALSINDI N,RAULEFS R,et al.Geolocation Techniques:Principles and Applications[M].New York:Springer-Verlag,2013.
[40]BRUNATO M,BATTITI R.Statistical Learning Theory for Location Fingerprinting in Wireless LANs[J].Computer Networks,2005,47(6):825-845.
[41]BATTITI R,VILLANI R,LE NHAT T L.Neural Network Models for Intelligent Networks:Deriving the Location from Signal Patterns[EB/OL].[2024-03-18].http:∥www.cains.cs.ucla.edu/ains2002/resource/battiti.pdf.
[42]HOANG M T,YUEN B,DONG X,et al.Recurrent Neural Networks for Accurate RSSI Indoor Localization[J].IEEEInternet of Things Journal,2019,6(6):10639-10651.
[43]HUANG S B,WANG B,ZHAO Y P,et al.Near-field RSS-based Localization Algorithms Using Reconfigurable Intelligent Surface[J].IEEE Sensors Journal,2022,22(4):3493-3505.
[44]YASSIN A,YOUSSEF N,MARIETTE A,et al.Recent Advances in Indoor Localization:A Survey on Theoretical Approaches and Applications[J].IEEE Communications Surveys and Tutorials,2017,19(2):1327-1346.
[45]LAOUDIAS C,MOREIRA A,KIM S,et al.A Survey of Enabling Technologies for Network Localization,Tracking and Navigation[J].IEEE Communications Surveys and Tutorials,2018,20(4):3607-3644.
[46]刘伶俐.固定单站无源定位方法研究[D].成都:西南交通大学,2006.
[47]CHEN P,CHEN Z M,ZHENG B X,et al.Efficient DOAEstimation Method for Reconfigurable Intelligent Surfaces Aided UAV Swarm[J].IEEE Transactions on Signal Processing,2022,70:743-755.
[48]ZHENG Z,HUANG Y X,WANG W Q,et al.Augmented Covariance Matrix Reconstruction for DOA Estimation Using Difference Coarray[J].IEEE Transactions on Signal Processing,2021,69:5345-5358.
[49]WAGNER M,PARK Y,GERSTOFT P.Gridless DOA Estimation and Root-MUSIC for Non-uniform Linear Arrays[J].IEEE Transactions on Signal Processing,2021,69:2144-2157.
[50]WEN F,WAN Q,FAN R,et al.Improved MUSICAlgorithm for Multiple Noncoherent Subarrays[J].IEEESignal Processing Letters,2014,21(5):527-530.
[51]GAO F,GERSHMAN A B.A Generalized ESPRIT Approach to Direction-of-Arrival Estimation[J].IEEE Signal Processing Letters,2005,12(3):254-257.
[52]LIN J C,MA X C,YAN S F,et al.Time-frequency Multiinvariance ESPRIT for DOA Estimation[J].IEEEAntennas and Wireless Propagation Letters,2016,15:770-773.
[53]UEMURA S,NISHIMORI K,TANIGUCHI R,et al.Direction-of-Arrival Estimation with Circular Array Using Compressed Sensing in 20 GHz Band[J].IEEE Antennas and Wireless Propagation Letters,2021,20(5):703-707.
[54]DA COSTA M F,CHI Y J.Compressed Super-resolution of Positive Sources[J].IEEE Signal Processing Letters,2021,28:56-60.
[55]TROPP J A,GILBERT A C.Signal Recovery from Random Measurements via Orthogonal Matching Pursuit[J].IEEE Transactions on Information Theory,2007,53(12):4655-4666.
[56]TROPP J A.Greed Is Good:Algorithmic Results for Sparse Approximation[J].IEEE Transactions on Information Theory,2004,50(10):2231-2242.
[57]刘永祥,师俊朋,黎湘.稀疏阵列MIMO雷达参数估计研究进展[J].中国科学:信息科学,2022,52(8):1560-1576.
[58]WANG M W,ZHU Z R,GUI C Y,et al.DOA Estimation of Two Adjacent Targets with MVDR Method by Using the Acoustic Vector Sensor Coprime Array[C]∥2023 IEEE 6th International Conference on Electronic Information and Communication Technology.Qingdao:IEEE,2023:1354-1358.
[59]贺顺,贺小艳,杨志伟,等.阵元位置误差下的嵌套阵列DOA估计方法[J].无线电工程,2023,53(3):657-662.
[60]CHI Y J,DA COSTA M F.Harnessing Sparsity over the Continuum:Atomic Norm Minimization for Superresolution[J].IEEE Signal Process,2020,37(2):39-57.
[61]CHEN P,CHEN Z M,CAO Z X,et al.A New Atomic Norm for DOA Estimation with Gain-phase Errors[J].IEEETransactions on Signal Processing,2020,68:4293-4306.
[62]PAL P,VAIDYANATHAN P P.Nested Arrays:A Novel Approach to Array Processing with Enhanced Degrees of Freedom[J].IEEE Transactions on Signal Processing,2010,58(8):4167-4181.
[63]LIU S H,MAO Z H,ZHANG Y D,et al.Rank Minimization-based Toeplitz Reconstruction for DoA Estimation Using Coprime Array[J].IEEE Communications Letters,2021,25(7):2265-2269.
[64]FU M C,ZHENG Z,WANG W Q,et al.Virtual Array Interpolation for 2-D DOA and Polarization Estimation Using Coprime EMVS Array via Tensor Nuclear Norm Minimization[J].IEEE Transactions on Signal Processing,2023,71:3637-3650.
[65]LI S,ZHANG X P.Dilated Arrays:A Family of Sparse Arrays with Increased Uniform Degrees of Freedom and Reduced Mutual Coupling on a Moving Platform[J].IEEETransactions on Signal Process,2021,69:3367-3382.
[66]BARTHELME A,UTSCHICK W.A Machine Learning Approach to DoA Estimation and Model Order Selection for Antenna Arrays with Subarray Sampling[J].IEEETransactions on Signal Process,2021,69:3075-3087.
[67]BARTHELME A,UTSCHICK W.DoA Estimation Using Neural Networkbased Covariance Matrix Reconstruction[J].IEEE Signal Process,2021,28:783-787.
[68]YAO G J,ZHANG H R,LI L,et al.The ORLS-based DoAEstimation for Unknown Mixtures of Uncorrelated and Coherent Signals Under Unknown Number of Sources[J].IEEE Signal Process Letters,2021 28:1105-1109.
[69]MAO Y Q,ZHANG G,LEUNG H.Harmonic Retrieval Joint Multiple Regression:Robust DOA Estimation for FMCW Radar in the Presence of Unknown Spatially Colored Noise[J].IEEE Communications Letters,2021,25(7):2240-2244.
[70]WANG Z,LUO J A,ZHANG X P.A Novel Location-penalized Maximum Likelihood Estimator for Bearing-only Target Localization[J].IEEE Transactions on Signal Processing,2012,60(12):6166-6181.
[71]ZHENG Y,SHENG M,LIU J Y,et al.Exploiting AoA Estimation Accuracy for Indoor Localization:A Weighted AoA-based Approach[J].IEEE Wireless Communications Letters,2018,8(1):65-68.
[72]于莹,许魁,夏晓晨,等.复杂地形条件下多AIRS辅助角度域AoA定位方法[J].通信技术,2022,55(6):740-746.
[73]HE D,CHEN X,PEI L,et al.Multi-BS Spatial Spectrum Fusion for 2-D DOA Estimation and Localization Using UCA in Massive MIMO System[J].IEEE Transactions on Instrumentation and Measurement,2021,70:1-13.
[74]WAN L T,SUN Y C,SUN L,et al.Deep Learning Based Autonomous Vehicle Super Resolution DOA Estimation for Safety Driving[J].IEEE Transactions on Intelligent Transportation Systems,2021,22(7):4301-4315.
[75]WANG H F,WAN L T,DONG M X,et al.Assistant Vehicle Localization Based on Three Collaborative Base Stations via SBL-based Robust DOA Estimation[J].IEEEInternet of Things Journal,2019,6(3):5766-5777.
[76]梁应敞,朱贤明.一种基于环境反向散射的定位系统:CN112505624B[P].2023-01-24.
[77]YANG G S,ZHAO L H,DAI Y P,et al.A KFL-TOAUWB Indoor Positioning Method for Complex Environment[C]∥2017 Chinese Automation Congress.Jinan:IEEE,2017:3010-3014.
[78]CHEN H T,WANG G,ANSARI N.Improved Robust TOA-based Localization via NLOS Balancing Parameter Estimation[J].IEEE Transactions on Vehicular Technology,2019,68(6):6177-6181.
[79]CONG L,ZHUANG W H.Nonline-of-Sight Error Mitigation in Mobile Location[J].IEEE Transactions on Wireless Communications,2005,4(2):560-573.
[80]YU K G,GUO Y J.Improved Positioning Algorithms for Nonline-of-Sight Environments[J].IEEE Transactions on Vehicular Technology,2008,57(4):2342-2353.
[81]CAO J M,DENG B,OUYANG X X,et al.Multidimensional Scaling-based Passive Emitter Localization from TOAMeasurements with Sensor Position Uncertainties[C]∥2016 IEEE 13th International Conference on Signal Processing.Chengdu:IEEE,2016:1692-1696.
[82]SHEN J Y,MOLISCH A F.Passive Location Estimation Using TOA Measurements[C]∥2011 IEEE International Conference on Ultra-Wideband.Bologna:IEEE,2011:253-257.
[83]CAO S,CHEN X,ZHANG X,et al.Combined Weighted Method for TDOA-based Localization[J].IEEE Transactions on Instrumentation and Measurement,2020,69(5):1562-1971.
[84]PEI Y H,LI X,YANG L,et al.A Closed-form Solution for Source Localization Using FDOA Measurements Only[J].IEEE Communications Letters,2023,27(1):115-119.
[85]SONG X,GAO W P,WANG X Y,et al.TDOA/FDOAJoint Positioning Method for Wireless Charging Vehicle[C]∥2022 International Conference on Artificial Intelligence,Information Processing and Cloud Computing.Kunming:IEEE,2022:215-220.
[86]AGRAWAL S,KUMAR P,SHARMA A.Passive Emitter Localisation Using TDOA and FDOA Measurements from UAV[C]∥2020 IEEE International Conference for Innovation in Technology.Bangluru:IEEE,2020:1-5.
[87]JUNG H,KANG J,KIM S.EKF-based Geolocation Using TDOA/FDOA Measurements in Dual-satellite[C]∥202213th International Conference on Information and Communication Technology Convergence.Jeju Island:IEEE,2022:1179-1182.
[88]IRUSTA U,GAUNA S R D,RUIZ J,et al.A Variable Step Size LMS Algorithm for the Suppression of the CPRArtefact from a VF Signal[C]∥Computers in Cardiology.Lyon:IEEE,2005:179-182.
[89]PADOIS T,DOUTRES O,SGARD F.On the Use of Modified Phase Transform Weighting Functions for Acoustic Imaging with the Generalized Cross Correlation[J].The Journal of the Acoustical Society of America,2019,145(3):1546-1555.
[90]LI X L.On Correcting the Phase Bias of GCC in Spatially Correlated Noise Fields[J].Signal Processing,2020,180:107859.
[91]JIANG W Y,DING B G.TDOA Localization Scheme with NLOS Mitigation[C]∥2020 IEEE 92nd Vehicular Technology Conference.Victoria:IEEE,2020:1-4.
[92]BORDOY J,SCHINDELHAUER C,ZHANG R.Robust Extended Kalman Filter for NLOS Mitigation and Sensor Data Fusion[C]∥2017 IEEE International Symposium on Inertial Sensors and Systems.Kauai:IEEE,2017:117-120.
[93]KIM J.Tracking a Maneuvering Target While Mitigating NLOS Errors in TDOA Measurements[J].IET Radar,Sonar and Navigation,2020,14(3):495-502.
[94]ZOU Y B,LIU H P.An Efficient NLOS Errors Mitigation Algorithm for TOA-based Localization[J].Sensors,2020,20(5):1403.
[95]ZHAO W S,DUAN X T,TIAN D X,et al.An SDP-based TDOA Localization Method for Wireless Sensor Networks[C]∥International Conference on Control,Automation and Information Sciences.Xi’an:IEEE,2021:381-386.
[96]APOLINARIO J A,YAZDANPANAH H,NASCIMENTO AS,et al.A Data-selective LS Solution to TDOA-based Source Localization[C]∥IEEE International Conference on Acoustics,Speech and Signal Processing.Brighton:IEEE,2021:4400-4404.
[97]HUA C,ZHAO K,DONG D N,et al.Multipath Map Method for TDOA Based Indoor Reverse Positioning System with Improved Chan-Taylor Algorithm[J].Sensors,2020,20(11):3223.
[98]QU J S,SHI H N,QIAO N,et al.New Three-dimensional Positioning Algorithm Through Integrating TDOA and Newton’s Method[J].EURASIP Journal on Wireless Communications and Networking,2020,2020(1):77.
[99]ZOU Y B,LIU H P.TDOA Localization with Unknown Signal Propagation Speed and Sensor Position Errors[J].IEEE Communications Letters,2020,24(5):1024-1027.
[100]WANG G,HO K C.Convex Relaxation Methods for Unified Near-field and Far-field TDOA-based Localization[J].IEEE Transactions on Wireless Communications,2019,18(4):2346-2360.
[101]ROSIC M,SIMIE M,LUKIC'P.TDOA Approach for Target Localization Based on Improved Genetic Algorithm[C]∥2016 24th Telecommunications Forum.Belgrade:IEEE,2016:1-4.
[102]CHEN H,BALLAL T,SAEED N,et al.A Joint TDOA-PDOA Localization Approach Using Particle Swarm Optimization[J].IEEE Wireless Communications Letters,2020,9(8):1240-1244.
[103]王文宇,朱磊,姚昌华,等.机器学习助力基于优化理论的TDOA无源定位[J].信息与控制,2022,51(4):385-399.
[104]ZHANG T N,MAO X P,ZHAO C L,et al.Optimal and Fast Sensor Geometry Design Method for TDOALocalisation Systems with Placement Constraints[J].IETSignal Processing,2019,13(8):708-717.
[105]ZHU Y P,XIA W W,YAN F,et al.NLOS Identification via AdaBoost for Wireless Network Localization[J].IEEECommunications Letters,2019,23(12):2234-2237.
[106]JIANG C H,SHEN J C,CHEN S,et al.UWB NLOS/LOSClassification Using Deep Learning Method[J].IEEECommunications Letters,2020,24(10):2226-2230.
[107]SUZUKI T,AMANO Y.NLOS Multipath Classification of GNSS Signal Correlation Output Using Machine Learning[J].Sensors,2021,21(7):2503.
[108]LI Z W,XU K,WANG H Y,et al.Machine-learningbased Positioning:A Survey and Future Directions[J].IEEE Network,2019,33(3):96-101.
[109]CHUGUNOV A,PETUKHOV N,KULIKOV R.ToA Positioning Algorithm for TDoA System Architecture[C]∥2020 International Russian Automation Conference.Sochi:IEEE,2020:871-876.
[110]XIANG F H,WANG J G,YUAN X H.Research on Passive Detection and Location by Fixed Single Observer[C]∥2020 International Conference on Information Science,Parallel and Distributed Systems(ISPDS).Xi’an:IEEE,2020:35-39.
[111]JIANG B,LU A N,YOU M Y,et al.A Single-observer Passive Location Algorithm Base on Weighted Least Squares Criterion[C]∥2022 IEEE 22nd International Conference on Communication Technology.Nanjing:IEEE,2022:1750-1754.
[112]LIU X,JIANG J,ZHANG Z.Cooperative Passive Location of Multi-UAVs Based on TDOA-DOA Fusion Algorithm[C]∥2023 6th International Symposium on Autonomous Systems.Nanjing:IEEE,2023:1-6.
[113]XU C,WANG Z,WANG Y H,et al.Three Passive TDOA-AOA Receivers-based Flying-UAV Positioning in Extreme Environments[J].IEEE Sensors Journal,2020,20(16):9589-9595.
[114]FOKIN G.Passive Geolocation with Unmanned Aerial Vehicles Using TDOA-AOA Measurement Processing[C]∥2019 21st International Conference on Advanced Communication Technology.Pyeongchang:IEEE,2019:360-365.
[115]LI H,SUN H M,ZHOU R H,et al.Hybrid TDOA/FDOAand Track Optimization of UAV Swarm Based on A-optimality[J].Journal of Systems Engineering and Electronics,2023 34(1):149-159.
[116]PINE K C,PINE S,CHENEY M.The Geometry of Farfield Passive Source Localization with TDOA and FDOA[J].IEEE Transactions on Aerospace and Electronic Systems,2021 57(6):3782-3790.
[117]黄东华,赵勇胜,赵拥军,等.基于DOA-TDOA-FDOA的单站无源相干定位代数解[J].电子与信息学报,2021,43(3):735-744.
[118]GONG Z J,LI C,SU R Y.Fundamental Limits of Doppler Shift-based,ToA-based,and TDoA-based Underwater Localization[J].IEEE/CAA Journal of Automatica Sinica,2023,10(7):1637-1639.
[119]HUSSAIN R,ZEADALLY S.Autonomous Cars:Research Results,Issues,and Future Challenges[J].IEEE Communications Surveys and Tutorials,2019,21(2):1275-1313.
[120]陈山枝,胡金玲,时岩,等.LTE-V2X车联网技术、标准与应用[J].电信科学,2018,34(4):1-11.
[121]LU N,CHENG N,ZHANG N,et al.Connected Vehicles:Solutions and Challenges[J].IEEE Internet of Things Journal,2014,1(4):289-299.
[122]SONG Y X,FU Y C,YU F R,et al.Blockchain-enabled Internet of Vehicles with Cooperative Positioning:A Deep Neural Network Approach[J].IEEE Internet of Things Journal,2020,7(4):3485-3498.
[123]ZHU G X,KO S W,HUANG K B.Inference from Randomized Transmissions by Many Backscatter Sensors[J].IEEE Transactions on Wireless Communications,2018,17(5):3111-3127.
[124]JING T,WEI X,CHENG W,et al.An efficient Scheme for Tag Information Update in RFID Systems on Roads[J].IEEE Transactions on Vehicular Technology,2016,65(4):2435-2444.
[125]QIN H,PENG Y,ZHANG W S.Vehicles on RFID:Errorcognitive Vehicle Localization in GPS-less Environments[J].IEEE Transactions on Vehicular Technology,2017,66(11):9943-9957.
[126]韩凯峰,刘铁志.基于反向散射通信的车辆精准定位技术[J].电信科学,2020,36(7):107-117.
[127]YAO C C,LIU Y,WEI X S,et al.Backscatter Technologies and the Future of Internet of Things:Challenges and Opportunities[J].Intelligent and Converged Networks,2020,1(2):170-180.
[128]LIU V,PARKS A,TALLA V,et al.Ambient Backscatter:Wireless Communication out of Thin Air[J].Computing reviews,2014,43(4):39-50.
[129]YANG G,LIANG Y C,ZHANG R,et al.Modulation in the Air:Backscatter Communication over Ambient OFDM Carrier[J].IEEE Transactions on Communications,2018,66(3):1219-1233.
[130]徐勇军,杨浩克,叶迎晖,等.反向散射通信网络资源分配综述[J].物联网学报,2021,5(3):56-69.
[131]HAN K F,HUANG K B.Wirelessly Powered Backscatter Communication Networks:Modeling,Coverage,and Capacity[J].IEEE Transactions on Wireless Communications,2017,16(4):2548-2561.
[132]CARVALHO N B,GEORGIADIS A,COSTANZO A,et al.Wireless Power Transmission:R&D Activities Within Europe[J].IEEE Transactions on Microwave Theory and Techniques,2014,62(4):1031-1045.
[133]YANG G,HO C K,GUAN Y L.Multi-antenna Wireless Energy Transfer for Backscatter Communication Systems[J].IEEE Journal on Selected Areas in Communications,2015,33(12):2974-2987.
[134]ZHANG S K,WANG W,TANG S Y,et al.Robot-assisted Backscatter Localization for IoT Applications[J].IEEETransactions on Wireless Communications,2020,19(9):5807-5818.
[135]SINGH K,TEJESHWINI D N,PATEL S,et al.Localization of Life Safety Vests in an Aircraft Using Backscattering RFID Communication[J].IEEE Journal of Radio Frequency Identification,2020,4(3):234-245.
[136]LAZARO A,LAZARO M,VILLARINO R.Room-level Localization System Based on LORA Backscatters[J].IEEEAccess,2021,9:16004-16018.
[137]LUO Z H,ZHANG Q P,MA Y F,et al.3D Backscatter Localization for Fine-grained Robotics[C]∥16th Symposium on Networked Systems Design and Implementation.Boston:USENIX Association,2019:765-781.
[138]HUANG T,XU X Y,KUAI X Y,et al.Integrated Sensing and Communication for Ambient Backscatter Communication Systems[C]∥2022 IEEE 22nd International Conference on Communication Technology.Nanjing:IEEE,2022:260-265.
[139]朱贤明.基于阵列天线的环境反向散射定位技术研究[D].成都:电子科技大学,2022.
[140]HE J G,WYMEERSCH H,SANGGUANPUAK T,et al.Adaptive Beamforming Design for mmWave RIS-aided Joint Localization and Communication[C]∥2020 IEEEWireless Communications and Networking Conference Workshops.Seoul:IEEE,2020:1-6.
[141]李兴旺,田志发,张建华,等.IRS辅助NOMA网络下隐蔽性能研究[EB/OL].(2023-11-22)[2024-03-18].https:∥dds.sciengine.com/cfs/files/pdfs/view/1674-7267/4657AE1D63844BE582458ADDAE2169BB-mark.pdf.
[142]ZHANG H B,HU J Z,ZHANG H L,et al.Metaradar:Indoor Localization by Reconfigurable Metamaterials[J].IEEE Transactions on Mobile Computing,2022,21(8):2895-2908.
[143]AMRI M M.Recent Trends in the Reconfigurable Intelligent Surfaces(RIS):Active RIS to Brain-controlled RIS[C]∥2022 IEEE International Conference on Communication,Networks and Satellite.Solo:IEEE,2022:299-304.
[144]DARDARI D.Communicating with Large Intelligent Surfaces:Fundamental Limits and Models[J].IEEE Journal on Selected Areas in Communications,2020,38(11):2526-2537.
[145]ZHANG H B,ZHANG H L,DI B Y,et al.Towards Ubiquitous Positioning by Leveraging Reconfigurable Intelligent Surface[J].IEEE Communications Letters,25(1):284-288.
[146]WYMEERSCH H,HE J G,DENIS B,et al.Radio Localization and Mapping with Reconfigurable Intelligent Surfaces:Challenges,Opportunities,and Research Directions[J].IEEE Vehicular Technology Magazine,2020,15(4):52-61.
[147]KEYKHOSRAVI K,KESKIN M F,SECO-GRANADOS G,et al.SISO RIS-enabled Joint 3D Downlink Localization and Synchronization[C]∥ICC 2021-IEEE International Conference on Communications.Montreal:IEEE,2021:1-6.
[148]STRINATI E C,ALEXANDROPOULOS G C,WYMEER-SCH H,et al.Reconfigurable,Intelligent,and Sustainable Wireless Environments for 6G Smart Connectivity[J].IEEE Communication,2021,59(10):99-105.
[149]GE Y,WEN F X,KIM H,et al.5G SLAM Using the Clustering and Assignment Approach with Diffuse Multipath[J].Sensors,2020,20(16):4656.
[150]WEN F X,WYMEERSCH H.5G Synchronization,Positioning,and Mapping from Diffuse Multipath[J].IEEEwireless Communications Letters,2021,10(1):43-47.
[151]WEN F X,KULMER J,WITRISAL K,et al.5GPositioning and Mapping with Diffuse Multipath[J].IEEETransactions on Wireless Communications,2021,20(2):1164-1174.
[152]KIM H,LEE S H,KIM S.Cooperative Localization with Constraint Satisfaction Problem in 5G Vehicular Networks[J].IEEE Transactions on Intelligent Transportation Systems,2022,23(4):3180-3189.
[153]TAN J B,DAI L L.Wideband Beam Tracking in THz Massive MIMO Systems[J].IEEE Journal on Selected Areas in Communications,2021,39(6):1693-1710.
[154]GUERRA A,GUIDI F,DARDARI D,et al.Near-field Tracking with Large Antenna Arrays:Fundamental Limits and Practical Algorithms[J].IEEE Transactions on Signal Processing,2021,69:5723-5738.
[155]CHEN H,SARIEDDEEN H,BALLAL T,et al.A Tutorial on Terahertz-band Localization for 6G Communication Systems[J].IEEE Communications Surveys and Tutorials,2022,24(3):1780-1815.
[156]张思伟,袁德成,王国刚.基于深度学习的智能表面毫米波MIMO信道估计[J].无线电工程,2024,54(4):892-899.
[157]张静,张强,苏颖.基于注意力机制引导深度残差网络的RIS辅助通信信道估计[J].无线电工程,2024,54(4):911-917.
[158]GAO Z,WAN Z W,ZHENG D Z,et al.Integrated Sensing and Communication with mmWave Massive MIMO:ACompressed Sampling Perspective[J].IEEE Transactions on Wireless Communications,2023,22(3):1745-1762.
[159]MUNDLAMURI R,GANGULA R,THOMAS C K,et al.Sensing Aided Channel Estimation in Wideband Millimeter-wave MIMO Systems[C]∥2023 IEEE International Conference on Communications Workshops.Rome:IEEE,2023:1404-1409.
基本信息:
DOI:
中图分类号:TN95
引用信息:
[1]李俊霞,王欣,黄高见等.无源定位技术发展及其展望[J].无线电工程,2024,54(08):1825-1846.
基金信息:
河南省重点研发专项(231111210500); 河南省高等学校重点科研项目(23B510001)~~