nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg journalInfo searchdiv qikanlogo popupnotification paper paperNew
2024, 02, v.54 473-482
基于残差时序卷积网络的水声通信信号模式识别
基金项目(Foundation): 博士后科学基金面上项目(2023M733615)~~
邮箱(Email):
DOI:
摘要:

水下通信信号模式识别是非合作水下通信信号识别中的关键一步,然而,水声信道的复杂多变给水下通信信号模式识别带来了很大挑战。针对传统算法模型复杂度高、提取特征多的问题,提出了一种残差网络和时序卷积网络相结合的残差时序卷积网络(Residual Temporal Convolutional Network, ResTCN)通信信号模式识别模型。该模型结构简单、网络收敛速度较快且具有较好的鲁棒性。通过实验仿真和海上试验对模型进行验证,在信噪比(Signal to Noise Ratio, SNR)大于-10 dB时,该方法在测试数据集上分类正确率为95%,在海试数据上正确率可达到93.5%。

Abstract:

Underwater communication signal pattern recognition plays an important role in non-cooperative underwater communication signal recognition. However, the complex and ever-changing underwater acoustic channel brings great challenges to underwater communication signal pattern recognition. To address the high model complexity and large number of extracted features of traditional algorithms, a Residual Temporal Convolutional Network(ResTCN)-based communication signal pattern recognition model is proposed, which combines residual network and time series convolutional network. The proposed model has a simple structure, high training convergence speed, and good robustness. The proposed model is verified in simulation and sea test experiments, and the result shows that the classification accuracy of the proposed method is 95% on the test data set and 93.5% on the sea test data, respectively, when the Signal to Noise Ratio(SNR) is greater than-10 dB.

参考文献

[1] ETTER P C.水声建模与仿真[M].北京:电子工业出版社,2005.

[2] 吴姚振,杨益新,杨龙,等.基于恒定束宽波形保真及干扰抑制的水下目标识别方法[J].西北工业大学学报,2015,33(5):843-848.

[3] 陈蕙心.通信信号调制识别技术研究[D].西安:西安电子科技大学,2018.

[4] 杨柳,赵晓群,徐静云.水声信号的调制方式识别[J].燕山大学学报,2014,38(2):156-162.

[5] 罗昕炜,方世良.基于HHT的宽带幅度非平稳调制信号的特征提取[J].信号处理,2011,27(6):950-955.

[6] 陆扬,王雪松,赵鹏远,等.基于时频分析和神经网络的水声通信信号识别技术[J].科技导报,2011,29(28):33-36.

[7] JIANG K Y,QIN X,ZHANG J W,et al.Modulation Recognition of Communication Signal Based on Convolutional Neural Network[J].Symmetry,2021,13(12):2302.

[8] 姚晓辉,杨宏晖,李益青.基于卷积神经网络的水声通信调制识别[J].无人系统技术,2018,1(4):68-74.

[9] 段乐峥.基于BELLHOP的水声信道时变模型[J].电子世界,2014(9):105.

[10] 董海.基于短时傅里叶变换的相位编码信号分析[J].电讯技术,2010,50(3):18-22.

[11] ALLEN J B,RABINER L R.A Unified Approach to Short-time Fourier Analysis and Synthesis[J].Proceedings of the IEEE,2015,65(11):1558-1564.

[12] 李威.基于深度学习的通信信号调制识别研究[D].西安:西安电子科技大学,2019.

[13] BAI S J,KOLTER J Z,KOLTUN V.Trellis Networks for Sequence Modeling[EB/OL].(2018-10-15) [2023-06-24].https://arxiv.org/abs/1810.06682.

[14] 王鹏,张君毅,赵国庆.基于卷积神经网络的调制识别新方法[J].无线电工程,2019,49(6):453-457.

[15] 刘炽.基于LSTM和TCN的室内定位系统研究与实现[D].济南:山东大学,2019.

[16] WENDELL T C,ABDELHAMIED K.A Phoneme Recognition System Using Modular Construction of Time-delay Neural Networks [C]//Proceedings Fifth Annual IEEE Symposium on Computer-based Medical Systems.Durham:IEEE,1992:704-709.

[17] PERONE C S,CALABRESE E,COHEN-ADAD J.Spinal Cord Gray Matter Segmentation Using Deep Dilated Convolutions[EB/OL].(2017-10-02) [2023-06-24].https:∥arxiv.org/abs/1710.01269.

[18] 杨小伟,文清丰,杨雪,等.基于卷积神经网络的无人机射频信号识别[J].无线电工程,2022,52 (3):456-462.

基本信息:

DOI:

中图分类号:TN929.3

引用信息:

[1]陈双双,顾师嘉,李娜娜等.基于残差时序卷积网络的水声通信信号模式识别[J].无线电工程,2024,54(02):473-482.

基金信息:

博士后科学基金面上项目(2023M733615)~~

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文