1,657 | 18 | 58 |
下载次数 | 被引频次 | 阅读次数 |
山区地势具有陡峭、沟深壑大的环境特点,导致基于启发式算法的山区无人机路径规划速度慢、质量差,针对该问题提出了基于自适应动作策略蜣螂算法的路径规划方法。以路径长度、飞行安全性以及路径平滑度构建路径规划目标函数;在蜣螂算法中引入种群相似性动作变异策略和反向学习策略,平衡局部优化和全局优化能力;通过对比麻雀算法、蜣螂算法和灰狼算法在12个基准函数上的算法性能,结果表明所提方法具有更快的收敛速度、不易陷入局部最优。山区路径规划仿真实验表明,所提方法比蜣螂算法的路径规划质量提高了37.66%。
Abstract:Due to the environmental characteristics of steep terrain and large gullies in mountainous areas, the UAV path planning in mountainous areas based on heuristic algorithm has slow speed and poor quality. To solve this problem, a path planning method of dung beetle algorithm based on adaptive action strategy is proposed. Firstly, the objective function of path planning is constructed with path length, flight safety and path smoothness. Then, the population similarity action mutation strategy and opposition-based learning strategy are introduced into the dung beetle algorithm to balance the local optimization and global optimization ability. Finally, by comparing the performance of sparrow algorithm, dung beetle algorithm and grey wolf algorithm on 12 benchmark functions, the results show that the proposed method has faster convergence speed and is not easy to fall into local optimum. The simulation experiment of path planning in mountainous area shows that the path planning quality of the proposed method is 37.66% higher than that of the dung beetle algorithm.
[1] 路晶,史宇,张书畅,等.无人机航迹规划算法综述[J].航空计算技术,2022,52(4):131-134.
[2] 雷耀麟,丁文锐,李雅,等.群体智能支撑的无人机群航路规划应用综述[J].无线电工程,2023,53(7):1509-1519.
[3] 蔺文轩,谢文俊,张鹏,等.基于分组优化改进粒子群算法的无人机三维路径规划[J].火力与指挥控制,2023,48(1):20-25.
[4] 苏菲.基于改进蝙蝠算法的无人机三维路径规划[J].无线电工程,2022,52(12):2229-2236.
[5] 黄鹤,吴琨,王会峰,等.基于改进飞蛾扑火算法的无人机低空突防路径规划[J].中国惯性技术学报,2021,29(2):256-263.
[6] 巫茜,黄浩,曾青,等.改进ACO算法的UAV航迹规划在山区物流配送中的应用研究[J].重庆理工大学学报(自然科学),2022,36(10):185-191.
[7] 郭启程,杜晓玉,张延宇,等.基于改进鲸鱼算法的无人机三维路径规划[J].计算机科学,2021,48(12):304-311.
[8] ZENG N Y,WANG Z D,LIU W B,et al.A Dynamic Neighborhood-based Switching Particle Swarm Optimization Algorithm [J].IEEE Transactions on Cybernetics,2022,52(9):9290-9301.
[9] 段建民,陈强龙.基于改进人工势场-遗传算法的路径规划算法研究[J].国外电子测量技术,2019,38(3):19-24.
[10] 许诺.基于改进PSO算法的UAV三维路径规划研究[J].电子测量技术,2022,45(2):78-83.
[11] 陈明强,李奇峰,冯树娟,等.基于改进粒子群算法的无人机三维航迹规划[J].无线电工程,2023,53(2):394-400.
[12] 许乐,赵文龙.基于新型灰狼优化算法的无人机航迹规划[J].电子测量技术,2022,45(5):55-61.
[13] 赵棣宇,郑宾,殷云华,等.改进粒子群算法的UAV突防路径规划[J].电光与控制,2023,30(4):12-16.
[14] XUE J K,SHEN B.Dung Beetle Optimizer:A New Meta-heuristic Algorithm for Global Optimization[J]Supercomput,2023,79:7305-7336.
[15] 宋立业,胡朋举.改进SSA在三维路径规划中的应用[J].传感器与微系统,2022,41(3):158-160.
[16] 冯增喜,何鑫,崔巍,等.混合随机反向学习和高斯变异的混沌松鼠搜索算法[J].计算机集成制造系统,2023,29(2):604-615.
[17] 舒聪.面向无人机航迹规划的改进麻雀搜索算法及应用[D].广州:广州大学,2022.
[18] 欧阳城添,唐风,朱东林.融合禁忌搜索的SSA算法及其路径规划的应用[J].电子测量技术,2022,45(22):32-40.
基本信息:
DOI:
中图分类号:TP18;V279;V249
引用信息:
[1]远翔宇,杨风暴,杨童瑶.基于自适应蜣螂算法的无人机三维路径规划方法[J].无线电工程,2024,54(04):928-936.
基金信息: