206 | 1 | 97 |
下载次数 | 被引频次 | 阅读次数 |
随着空间技术的快速发展,以星链为代表的低轨卫星数量呈爆炸式增长,对空间安全造成了巨大影响;低轨卫星具备空间在轨攻击、机动侦察干扰和高精度对地攻击的潜力,急需对其进行有效监测。传统光学监测手段采用的大型望远镜存在体积大、造价高、数量少、位置固定的缺陷,难以满足大批量、高灵活性监测需求,小型望远镜则兼具数量多、成本低、易于灵活部署的优势。提出一种基于小型望远镜的低轨卫星监测方法,利用双行轨道根数(Two Line Elements, TLE)预测低轨卫星的方位角和高度角,通过小型望远镜对低轨卫星和恒星进行成像后,利用改进的形态学击中击不中变换(Hit-Miss Transform, HMT)检测算法和拖尾星点提取算子分别提取卫星和恒星目标,根据卫星星点与恒星星点的几何关系得到低轨卫星的赤经赤纬数据。实验表明,基于小型望远镜系统能有效实现非合作低轨卫星监测,外符合精度优于3″,可满足对低轨目标的监测要求。
Abstract:With the rapid development of space technology, the number of low-orbit satellites, with Starlink as the typical example, is growing explosively, which has a great impact on space security. At the same time, low-orbit satellites have the potential for on-orbit space attacks, mobile reconnaissance interference and high-precision attacks to the ground, for which effective monitoring is necessary. Traditional optical monitoring means using large telescopes have the defects of large size, high cost, small number and fixed position, which cannot meet the demand for high-volume and high-flexibility monitoring, while small telescopes have the advantages of large number, low cost, and deployment flexibility. A small telescope-based LEO satellite monitoring method is proposed, which utilizes the Two Line Elements(TLE) to predict the azimuth and altitude angles of LEO satellites, and after imaging the LEO satellites and stars through small telescopes, the satellite and star targets are extracted respectively by using the improved morphology Hit-Miss Transform(HMT) detection algorithm and the trailing star extraction operator, and finally, the right ascension and declination data of LEO satellites are obtained based on the geometric relationship between satellite and star spots. The experiment shows that the small telescope-based system can effectively realize non-cooperative low-orbit satellite monitoring, and the conformity accuracy is better than 3″, which can meet the monitoring requirements for low-orbit targets.
[1]姬涛,俞道滨,郭瑶,等.对低轨卫星星座天基测控服务模式的设计与应用[J].无线电工程,2023,53(9):2182-2186.
[2]刘旭光,钱志升,周继航,等.“星链”卫星系统及国内卫星互联网星座发展思考[J].通信技术,2022,55(2):197-204.
[3] BOLEY A C, BYERS M. Satellite Mega-constellations Create Risks in Low Earth Orbit,the Atmosphere and on Earth[J]. Scientific Reports,2021,11:10642.
[4] DANG T,LI X L,LUO B X,et al. Unveiling the Space Weather During the Starlink Satellites Destruction Event on 4 February 2022[J]. Space Weather, 2022, 20(8):003152.
[5] WALKER C,HALL J,ALLEN L,et al. Impact of Satellite Constellations on Optical Astronomy and Recommendations Toward Mitigations[J]. Bulletin of the American Astronomical Society,2020,52(2):1-22.
[6] LALBAKHSH A,PITCAIRN A,MANDAL K,et al. Darkening Low-earth Orbit Satellite Constellations:A Review[J]. IEEE Access,2022,10:24383-24394.
[7] JIANG P,LIU C Z,YANG W B,et al. Automatic Space Debris Extraction Channel Based on Large Field of View Photoelectric Detection System[J]. Publications of the Astronomical Society of the Pacific,2022,134:024503.
[8]刘强.大视场小口径望远镜阵列实时天文目标探测方法[D].太原:太原理工大学,2021.
[9] JIA P,LI X Y,LI Z Y,et al. Point Spread Function Modelling for Wide-field Small-aperture Telescopes with a Denoising Autoencoder[J]. Monthly Notices of the Royal Astronomical Society,2020,493(1):651-660.
[10] MACRAE D. Orbit Outlook Aims to Reduce Space Debris Risk[EB/OL].(2016-08-24)[2024-09-01].https:∥www. aircosmosinternational. com/article/orbitoutlook-aims-to-reduce-space-debris-risk-2173.
[11]王兴龙,蔡亚星,陈士明,等.多源信息融合在空间态势感知领域的应用与发展[J].航天返回与遥感,2021,42(1):11-20.
[12]倪源蔓,戴东凯,王省书,等.针对不同海拔白昼星光探测的星敏感器光学参数优化[J].红外与激光工程,2024,53(7):153-163.
[13] MCDOWELL J C. The Low Earth Orbit Satellite Population and Impacts of the Space X Starlink Constellation[J].The Astrophysical Journal Letters,2020,892(2):1-10.
[14] LI B,ZHANG Y,HUANG J,et al. Improved Orbit Predictions Using Two-line Elements Through Error Pattern Mining and Transferring[J]. Acta Astronautica,2021,188:405-415.
[15]?ILHA J,KRAJCOVIC S,ZIGO P,et al. Development and Operational Status of AGO70 Telescope[C]∥Proceedings of the 8th European Conference on Space Debris. Darmstadt:ESA,2021:2018-2035.
[16]刘溪,黄聪,崔勇强,等.基于SGP4模型的卫星多普勒频移补偿方法研究[J].科学技术与工程,2015,15(21):154-158.
[17] FAN Q,MA Y,WANG P Z,et al. Otsu Image Segmentation Based on a Fractional Order Moth-flame Optimization Algorithm[J]. Fractal and Fractional,2024,8(2):87.
[18] WANG B W,WANG H Y,MAO X N,et al. Optical System Design Method of Near-earth Short-wave Infrared Star Sensor[J]. IEEE Sensors Journal,2022,22(22):22169-22178.
[19] ISLAM M A,MURRAY B,BUCK A,et al. Extending the Morphological Hit-or-Miss Transform to Deep Neural Networks[J]. IEEE Transactions on Neural Networks and Learning Systems,2020,32(11):4826-4838.
[20]李辉,王安国,张磊.改进金字塔算法用于小视场星图识别[J].应用光学,2013,34(2):267-272.
[21]刘路,郭金运,周茂盛,等. GNSS广播星历轨道和钟差精度分析[J].武汉大学学报(信息科学版),2022,47(7):1122-1132.
[22]寇瑞雄,杨树文.准天顶卫星系统广播星历精度评定和拟合精度分析[J].全球定位系统,2021,46(5):39-47.
基本信息:
DOI:
中图分类号:P111.2;TP274
引用信息:
[1]张梦瑶,杨原,陈智兴,等.基于小型光学望远镜的低轨卫星监测技术[J].无线电工程,2025,55(03):572-579.
基金信息:
国家自然科学基金(42374011); 河南省优秀青年基金(242300421150)~~