301 | 0 | 60 |
下载次数 | 被引频次 | 阅读次数 |
时空轨迹预测在交通管理和城市规划中至关重要,但传统模型受数据稀疏性、噪声污染和非线性关系的限制,群体智能驱动的时空轨迹预测技术能够克服传统模型的不足,实现高精度、实时性的预测。对当前群体智能技术研究中常用的群体数据源进行综述,介绍了群体智能的核心优化算法,如粒子群优化和蚁群优化,同时介绍了时空轨迹的表示方式;总结基于概率和基于机器学习的时空轨迹预测方法,概述了群体智能驱动的轨迹预测技术路线;讨论群体智能在当前时空轨迹预测领域的主要应用场景,包括交通路径规划、自然环境监测与操作风险预警等,展望群体智能驱动下的时空轨迹预测技术在认知增强、自治系统和去中心化学习等领域的应用潜力。
Abstract:Spatio-temporal trajectory prediction is essential in traffic management and urban planning, but traditional models are constrained by data sparsity, noise pollution, and non-linear relationships. Swarm intelligence-driven spatio-temporal trajectory prediction technology can overcome the limitations of traditional models, achieving high-precision and real-time prediction. Firstly, the commonly-used swarm data sources in current swarm intelligence research are reviewed, and the core optimization algorithms, such as particle swarm optimization and ant colony optimization are summarized, and the representation of spatio-temporal trajectories is given. Secondly, the probability-based and machine learning-based spatio-temporal trajectory prediction methods are summarized, and the technical route of swarm intelligence-driven trajectory prediction is outlined. Lastly, the main application scenarios of swarm intelligence in current spatio-temporal trajectory prediction are discussed, including traffic path planning, natural environment monitoring, and operational risk warning, and the potential of swarm intelligence-driven spatio-temporal trajectory prediction technology in cognitive enhancement, autonomous systems, and decentralized learning is explored.
[1] QIAO S J,HAN N,LI H,et al.A Three-in-one Dynamic Shared Bicycle Demand Forecasting Model Under Non-classical Conditions[J].Applied Intelligence,2024(54):8592-8611.
[2] HU Z Y,CAO Y,LI X Y,et al.Towards Dynamic Pricing Based Autonomous Valet Parking Management Under Demand Uncertainty[J].IEEE Transactions on Vehicular Technology,2024,73(5):6196-6211.
[3] 唐炉亮,赵紫龙,杨雪,等.大数据环境下道路场景高时空分辨率众包感知方法[J].测绘学报,2022,51(6):1070-1090.
[4] 申明锐,尹介琪,乔艺波.基于时空大数据的县域公共服务设施配置评估与调控方法[J].城市发展研究,2024,31(7):86-96.
[5] YE N,ZHANG Y Y,WANG R C,et al.Vehicle Trajectory Prediction Based on Hidden Markov Model[J].KSII Transactions on Internet and Information Systems,2016,10(7):3150-3170.
[6] 乔少杰,吴凌淳,韩楠,等.情景感知驱动的移动对象多模式轨迹预测技术综述[J].软件学报,2023,34(1):312-333.
[7] HUANG Y M,LIU C H.Applying Adaptive Swarm Intelligence Technology with Structuration in Web-based Collabo-rative Learning[J].Computers & Education,2009,52(4):789-799.
[8] SELVARAJ S,CHOI E.Survey of Swarm Intelligence Algorithms[C]//Proceedings of the 3rd International Conference on Software Engineering and Information Management.Sydney:ACM,2020:69-73.
[9] ETTER V,KAFSI M,KAZEMI E,et al.Where to Go from Here?Mobility Prediction from Instantaneous Information[J].Pervasive and Mobile Computing,2013,9(6):784-797.
[10] DUNTON G F,BERRIGAN D,BALLARD-BARBASH R,et al.Adolescents’ Sports and Exercise Environments in a U.S.Time Use Survey[J].American Journal of Preventive Medicine,2010,39(2):122-129.
[11] MERZ C.UCI Repository of Machine Learning Databases [EB/OL].[2024-01-10].https://api.semanticscholar.org/CorpusID:209099422.
[12] WILSON B,QI W,AGARWAL T,et al.Argoverse 2:Next Generation Datasets for Self-driving Perception and Forecasting[EB/OL].[2024-01-12].https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/4734ba6f3de83d861c3176a6273cac6d-Paper-round2.pdf.
[13] KENNEDY J,EBERHART R.Particle Swarm Optimization[C]//Proceedings of the ICNN’95-International Conference on Neural Networks.Perth:IEEE,1995:1942-1948.
[14] DORIGO M,BIRATTARI M,STUTZLE T.Ant Colony Optimization[J].IEEE Computational Intelligence Magazine,2006,1(4):28-39,
[15] 曹昕鸷,韩珏.基于扩散模型和粒子群优化的无线网节点定位[J].无线电工程,2022,52(12):2196-2202.
[16] DELIGKARIS K.Particle Swarm Optimization and Random Search for Convolutional Neural Architecture Search[J].IEEE Access,2024(12):91229-91241.
[17] AMBUJ,NAGAR H,PAUL A,et al.Reinforcement Learning Particle Swarm Optimization Based Trajectory Planning of Autonomous Ground Vehicle Using 2D LiDAR Point Cloud[J].Robotics and Autonomous Systems,2024,2024(178):104723.
[18] DORIGO M,MANIEZZO V,COLORNI A.Ant System:Optimization by a Colony of Cooperating Agents[J].IEEE Transactions on System Man and Cybernetics Part B,1996,26(1):29-41.
[19] WANG X Y,CHOI T M,LIU H K,et al.Novel Ant Colony Optimization Methods for Simplifying Solution Construction in Vehicle Routing Problems[J].IEEE Transactions on Intelligent Transportation Systems,2016,17(11):3132-3141.
[20] 辜勇,刘迪.自适应混合蚁群算法求解带容量约束车辆路径问题[J].东北大学学报(自然科学版),2023,44(12):1686-1695.
[21] GAO Y L,WU H G,WANG W T.A Hybrid Ant Colony Optimization with Fireworks Algorithm to Solve Capacitated Vehicle Routing Problem[J].Applide Intelligence,2023,53(6):7326-7342.
[22] KYRIAKAKIS A N,STAMADIANOS T,MARINAKI M,et al.The Electric Vehicle Routing Problem with Drones:An Energy Minimization Approach for Aerial Deliveries[J].Cleaner Logistics and Supply Chain,2022(4):100041.
[23] 何美玲,杨梅,韩珣,等.带时间窗的时间依赖型同时取送货车辆路径问题研究[J].交通运输系统工程与信息,2024,24(4):231-242.
[24] CHEN B L,JIANG W X,YU Y T,et al.Graph Embedding Based Ant Colony Optimization for Negative Influence Propagation Suppression Under Cost Constraints[J].Swarm and Evolutionary Computation,2022(72):101102.
[25] 陈希琼,胡大伟,杨倩倩,等.多目标同时取送货车辆路径问题的改进蚁群算法[J].控制理论与应用,2018,35(9):1347-1356.
[26] XIANG X S,QIU J F,XIAO J H,et al.Demand Coverage Diversity Based Ant Colony Optimization for Dynamic Vehicle Routing Problems[J].Engineering Applications of Artificial Intelligence,2020,2020(91):103582.
[27] XU H T,PAN P,FENG D.Dynamic Vehicle Routing Problems with Enhanced Ant Colony Optimization[J].Discrete Dynamics in Nature and Society,2018(4):1-13.
[28] BELL J E,MCMULLEN P R.Ant Colony Optimization Techniques for the Vehicle Routing Problem[J].Advances Engineering Informatics,2004,18(1):41-48.
[29] ATLURI G,KARPATNE A,KUMAR V.Spatio-Temporal Data Mining:A Survey of Problems and Methods[J].ACM Computing Surveys,2018,51(4):1-41.
[30] 游思思.基于时空信息嵌入的多目标跟踪方法研究[D].合肥:合肥工业大学,2022.
[31] LI Z H,XIA L X,XU Y,et al.GPT-ST:Generative Pre-training of Spatio-Temporal Graph Neural Networks[EB/OL].(2023-11-07)[2024-01-11].https://arxiv.org/abs/2311.04245.
[32] 邱玉华.基于时空轨迹大数据的路线规划机制的研究与系统构建[D].南京:南京邮电大学,2020.
[33] QIAO S J,SHEN D Y,WANG X T,et al.A Self-adaptive Parameter Selection Trajectory Prediction Approach via Hidden Markov Models[J].IEEE Transactions on Intelligent Transportation Systems,2015,16(1):284-296.
[34] WU W T,JIN W Z,LIN P Q.Research on Choice of Travel Mode Model Based on Naive Bayesian Method[C] //2011 International Conference on Business Management and Electronic Information.Guangzhou:IEEE,2011:439-444.
[35] BARRIOS C,HIMBERG H,MOTAI Y,et al.Multiple Model Framework of Adaptive Extended Kalman Filtering for Predicting Vehicle Location[C]//2016 Intelligent Transportation Systems Conference.Toronto:IEEE,2006:1053-1059.
[36] ZHANG X Y,LIU G,HU C,et al.Wavelet Analysis Based Hidden Markov Model for Large Ship Trajectory Prediction[C] //2019 Chinese Control Conference.Guangzhou:IEEE,2019:2913-2918.
[37] 张迎亚.基于隐马尔可夫模型的车辆轨迹预测算法的研究[D].南京:南京邮电大学,2017.
[38] ANKIT,NARAYANAN K,GHOSH D,et al.Multi-variable State Prediction:HMM Based Approach for Real-time Trajectory Prediction[C] //2021 International Conference on Intelligent Robots and Systems.Prague:IEEE,2021:8052-8058.
[39] 何钢磊.换道场景下智能车辆意图和轨迹预测方法研究[D].长春:吉林大学,2021.
[40] JIANG Y D,ZHU B,YANG S,et al.Vehicle Trajectory Prediction Considering Driver Uncertainty and Vehicle Dynamics Based on Dynamic Bayesian Network[J].IEEE Transactions on Systems Man Cybernetics:Systems,2023,53(2):689-703.
[41] PANG Y T,ZHAO X Y,HU J M,et al.Bayesian Spatio-Temporal Graph Transformer Network (B-STAR)for Multi-aircraft Trajectory Prediction[J].Knowledge-Based Systems,2022(249):108998.
[42] 戴礼灿,刘欣,张海瀛,等.基于卡尔曼滤波算法展开的飞行目标轨迹预测[J].系统工程与电子技术,2023,45(6):1814-1820.
[43] LI Z N,SUN H,XIAO D,et al.Hybrid Kalman Recurrent Neural Network for Vehicle Trajectory Prediction[J].IEEE Transactions on Instrumentation and Measurement,2024,73:1-14.
[44] 乔少杰,韩楠,朱新文,等.基于卡尔曼滤波的动态轨迹预测算法[J].电子学报,2018,46(2):418-423.
[45] KITANI K M,ZIEBART B D,BAGNELL J A,et al.Activity Forecasting[EB/OL].[2024-01-15].https://courses.cs.washington.edu/courses/cse590v/13au/Activity%20Forecasting.pdf.
[46] 王泽天,高岭,高全力.基于改进马尔可夫链的移动轨迹预测方法[J].西安工程大学学报,2020,34(2):97-102.
[47] NAYAK A,ESKANDARIAN A,DOERZAPH Z.Uncertainty Estimation of Pedestrian Future Trajectory Using Bayesian Approximation[J].IEEE Open Journal of Intelligent Transportation Systems,2022,3:617-630.
[48] 乔少杰,韩楠,丁治明,等.多模式移动对象不确定性轨迹预测模型[J].自动化学报,2018,44(4):608-618.
[49] BARTH A,FRANKE U.Where Will the Oncoming Vehicle Be the Next Second?[C]//2018 Intelligent Vehicles Symposium.Eindhoven:IEEE,2008:1068-1073.
[50] QIAO S J,HAN N,ZHU W,et al.Traplan:An Effective Three-in-One Trajectory-prediction Model in Transportation Networks[J].IEEE Transactions on Intelligent Transportation Systems,2015,16(3):1188-1198.
[51] BOUBEZOUL A,KOITA A,DAUCHER D.Vehicle Tra-jectories Classification Using Support Vectors Machines for Failure Trajectory Prediction[C]//2009 International Conference on Advances in Computational Tools for Engineering Applications.Beirut:IEEE,2009:486-491.
[52] ZHOU H,CHEN Y J,ZHANG S M.Ship Trajectory Prediction Based on BP Neural Network[J].Journal on Artificial Intelligence,2019,1(1):29-36.
[53] ZHAO S,LI Z Z,ZHU Z K,et al.An Integrated Framework for Accurate Trajectory Prediction Based on Deep Learning[J].Applied Intelligence,2024,54:10161-10175.
[54] CHEN J L,KANG J W,XU M R,et al.Multiagent Deep Reinforcement Learning for Dynamic Avatar Migration in Aiot-enabled Vehicular Metaverses with Trajectory Prediction[J].IEEE Internet of Things Journal,2024,11(1):70-83.
[55] ALAHI A,GOEL K,RAMANATHAN V,et al.Social LSTM:Human Trajectory Prediction in Crowded Spaces[C]//2016 IEEE Computer Vision and Pattern Recognition (CVPR).Las Vegas:IEEE,2016:961-971.
[56] BARTOLI F,LISANTI G,BALLAN L,et al.Context-aware Trajectory Preiction[C]//2018 24th International Conference on Pattern Recognition (ICPR).Beijing:IEEE,2018:1941-1946.
[57] 谢添丞,乔少杰,张桃,等.基于情景感知与移动数据挖掘的行人轨迹预测方法[J].无线电通信技术,2023,49(4):606-615.
[58] 乔少杰,韩楠,李天瑞,等.基于前缀投影技术的大规模轨迹预测模型[J].软件学报,2017,28(11):3043-3057.
[59] FENG Y Y,YAN X L.Support Vector Machine Based Lane-changing Behavior Recognition and Lateral Trajectory Prediction[J].Computational Intelligence and Neuroscience,2022,1:3632333.
[60] GUO L,QIN Z K,GE P,et al.Adaptive Lane-departure Prediction Method with Support Vector Machine and Gated Recurrent Unit Models[J].Journal of Transportation Engineering Part A-Systems,2022,148(11):162-171.
[61] FANG Z Q,PAN L,CHEN L,et al.MDTP:A Multi-source Deep Traffic Prediction Framework over Spatio-Temporal Trajectory Data[J].Proceedings of the VLDB Endowment,2021,14(8):1289-1297.
[62] XIA S,WANG Z,YU H,et al.A PSO-GWO-RBF Neural Network for Air Target Trajectory Prediction[C]//Proceedings of the 2022 5th International Conference on Machine Learning and Machine Intelligence.Hangzhou:ICML,2022:76-81.
[63] 王均刚,丁惠倩,胡柏青.基于滑动窗口PSO-LSSVR的船舶轨迹预测模型[J].武汉理工大学学报,2022,44(12):35-43.
[64] OMAR M,YAKUB F,ABDULLAH S S,et al.One-step vs Horizon-step Training Strategies for Multi-step Traffic Flow Forecasting with Direct Particle Swarm Optimization Grid Search Support Vector Regression and Long Short-Term Memory[J].Expert Systems with Applications.2024,252:124-157.
[65] MING B O J,WONG R T K,JASSER M B,et al.Performance Evaluation of Particle Swarm Optimisation Control for Traffic Light Systems in Roundabouts[C]//2023 IEEE 13th International Conference on System Engineering and Technology.Shah Alam:IEEE,2023:340-345.
[66] 李元东.可视化群体智能决策山体滑坡实时监测预警系统[D].重庆:重庆邮电大学,2021.
[67] SENAPATI T,SARKAR A,CHEN G Y.Enhancing Healthcare Supply Chain Management Through Artificial Intelligence-driven Group Decision-making with Sugeno-Weber Triangular Norms in a Dual Hesitant Q-rung Orthopair Fuzzy Context[J].Engineering Applications of Artificial Intelligence,2024,135(1):108794.
基本信息:
DOI:
中图分类号:U495
引用信息:
[1]潘乐盈,韩楠,罗娜等.群体智能驱动的时空轨迹预测技术综述[J].无线电工程,2024,54(12):2744-2753.
基金信息:
国家自然科学基金(62272066); 四川省科技计划(2023YFG0027,2024YFFK0413); 教育部人文社会科学研究规划基金(22YJAZH088); 成都市技术创新研发项目重点项目(2024-YF08-00029-GX);成都市技术创新研发项目(2024-YF05-01217-SN); 网络空间安全教育部重点实验室开放基金课题(KLCS20240106)~~