230 | 0 | 30 |
下载次数 | 被引频次 | 阅读次数 |
针对轨道角动量(Orbital Angular Momentum,OAM)在无线通信系统中相位奇点的问题,提出了一种产生矢量OAM波的透射超表面。设计了一种超表面透射单元实现透射极化和相位的调控,并由此单元排布组成透射超表面。采用透射超表面调控透射电磁波的相位和极化在空间中的分布,极化控制为OAM波引入矢量模。仿真分析和测试结果基本吻合,均表明该超表面工作频率为10 GHz,能够将线极化波转换为模态为+1的矢量OAM波,在传播方向上增益为3.9 dBi,消除了中心相位奇点,验证了所提出方案的有效性。
Abstract:To solve the problem of phase singularities of conventional Orbital Angular Momentum(OAM)in wireless communication,a transmission metasurface is presented for generating vector OAM. An element that can control the transmission phase and polarization is designed,and the metasurface is developed by properly arranging this element. The main idea is to manipulate the phase and polarization distributions of waves in space by designing a transmission metasurface,where the polarization control is introduced as vector modes for OAM waves. The simulation analysis is consistent the measurement results,both showing that the metasurface can convert a linear polarized waves into vector OAM waves with mode + 1 at the frequency of 10 GHz,with a gain of3. 9 dBi in the propagation direction. Also the central phase singularity is eliminated and the effectiveness is verified.
[1] ISAKOV D,WU Y,ALLEN B,et al. Evaluation of the Laguerre-Gaussian Mode Purity Produced by Three-dimensional-printed Microwave Spiral Phase Plates[J].Royal Society Open Science,2020,7(7):200493.
[2] LI H,KANG L,DONG K. Generating Tunable Orbital Angular Momentum Radio Beams with Dual-circular-polarization and Dual-mode Characteristics[J]. IEEE Access,2020,8:211248-211254.
[3] CHEN M L N,JIANG L J,SHA W E I. Ultrathin Complementary Metasurface for Orbital Angular Momentum Generation at Microwave Frequencies[J]. IEEE Transactions on Antennas and Propagation,2017,65(1):396-400.
[4] BYUN W J,LEE Y S,KIM B S,et al. Simple Generation of Orbital Angular Momentum Modes with Azimuthally Deformed Cassegrain Subreflector[J]. Electronics Letters,2015,51(19):1480-1482.
[5] LIANG J J,ZHANG S L. Orbital Angular Momentum(OAM)Generation by Cylinder Dielectric Resonator Antenna for Future Wireless Communications[J]. IEEE Access,2016,4:9570-9574.
[6] OVERVIG A C,SHRESTHA S,MALEK S C,et al. Dielectric Metasurfaces for Complete and Independent Control of the Optical Amplitude and Phase[J]. Light:Science&Applications,2019,8(1):92.
[7]王禹翔,袁乐眙,李金星,等.圆极化解耦手性辅助超表面[J].无线电工程,2022,52(2):216-220.
[8] GUAN L,HE Z,DING D Z,et al. Polarization-controlled Shared-aperture Metasurface for Generating a Vortex Beam with Different Modes[J]. IEEE Transactions on Antennas and Propagation,2018,66(12):7455-7459.
[9] MENG X S,WU J J,WU Z S,et al. Design of Multiplepolarization Reflectarray for Orbital Angular Momentum Wave in Radio Frequency[J]. IEEE Antennas and Wireless Propagation Letters,2018,17(12):2269-2273.
[10]MA L N,CHEN C,ZHOU L Y,et al. Single-layer Transmissive Metasurface for Generating OAM Vortex Wave with Homogeneous Radiation Based on the Principle of Fabry-Perot Cavity[J]. Applied Physics Letters,2019,114(8):081603.
[11]KUZNETSOV S A,ASTAFEV M A,BERUETE M,et al.Planar Holographic Metasurfaces for Terahertz Focusing[J]. Scientific Reports,2015,5(1):7738.
[12]郭晓斌,李秀萍,齐紫航,等.1-bit模态可重构涡旋电磁波天线研究[J].无线电工程,2022,52(2):263-267.
[13]JI C,SONG J K,HUANG C,et al. Dual-band Vortex Beam Generation with Different OAM Modes Using Single-layer Metasurface[J]. Optics Express,2019,27(1):34-44.
[14]ZHANG D,CAO X Y,GAO J,et al. A Shared Aperture1 Bit Metasurface for Orbital Angular Momentum Multiplexing[J]. IEEE Antennas and Wireless Propagation Letters,2019,18(4):566-570.
[15]YANG H,ZHENG S L,ZHANG H Q,et al. A THz-OAM Wireless Communication System Based on Transmissive Metasurface[J]. IEEE Transactions on Antennas and Propagation,2023,71(5):4194-4203.
[16]LIU X B,LI S J,HE C Y,et al. Multiple Orbital Angular Momentum Beams with High-purity of Transmissioncoding Metasurface[J]. Advanced Theory and Simulations,2023,6(4):2200842.
[17]YUE F D,WEN D D,XIN J T,et al. Vector Vortex Beam Generation with a Single Plasmonic Metasurface[J]. ACS Photonics,2016,3(9):1558-1563.
[18]SARAEREH O A. Design and Performance Evaluation of OAM-antennas:A Comparative Review[J]. IEEE Access,2023,11:27992-28013.
[19]CARVER K,MINK J. Microstrip Antenna Technology[J]. IEEE Transactions on Antennas and Propagation,1981,29(1):2-24.
基本信息:
DOI:
中图分类号:TN92
引用信息:
[1]李梦粤,吴茜虹,楼群.基于矢量轨道角动量波的透射超表面设计[J].无线电工程,2024,54(09):2109-2115.
基金信息: