nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2024 12 v.54 2902-2912
基于改进YOLOv5s的交通标志检测算法
基金项目(Foundation): 无锡学院人才启动基金(2021r 014); 江苏省大学生创新创业训练计划项目(202313982037Y)~~
邮箱(Email):
DOI:
中文作者单位:

无锡学院电子信息工程学院;

摘要(Abstract):

针对现有的目标检测模型对复杂天气下的交通标志检测存在漏检与错检的情况,提出了一种改进YOLOv5s的交通标志识别算法。为提高算法在各种复杂场景下的适应性,设计了一种基于重参数化(Re-Parameterized, ReP)的C3模块,将其命名为C3_DB;在网络的Neck部分引入上下文聚合模块,使得算法可以聚焦于重点区域的特征,减少复杂背景造成的混淆,从而提升模型的特征提取能力;引入高效交并比(Efficient Intersection over Union, EIoU)损失函数代替传统的完全交并比(Complete Intersection over Union, CIoU)损失函数,提升模型训练时的收敛速度,进一步提升模型对复杂情景下目标的检测性能。在中国交通标志数据集CCTSDB 2021上的实验结果表明,改进后算法的平均精度均值(mean Average Precision, mAP)为79.8%,相较于YOLOv5s提升2.4%,检测速度达到128帧/秒,在检测性能与检测速度之间取得了较好的平衡。意味着改进后的算法能够满足更高精度的交通标志实时检测需求,为实际应用提供了可靠的解决方案。研究成果对未来的交通管理和自动驾驶系统的发展具有重要意义,为提高安全性和可靠性提供了新的前景。

关键词(KeyWords): 交通标志检测;重参数化;目标检测
参考文献

[1] MOGELMOSE A,TRIVEDI M M,MOEDLUND T B.Vision-based Traffic Sign Detection and Analysis for Intelligent Driver Assistance Systems:Perspectives and Survey[J].IEEE Transactions on Intelligent Transportation Systems,2012,13(4):1484-1497.

[2] GIRSHICK R,DONAHUE J,DARRELL T,et al.Region-based Convolutional Networks for Accurate Object Detection and Segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,38(1):142-158.

[3] GIRSHICK R.Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision (ICCV).Santiago:IEEE,2015:1440-1448.

[4] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:Towards Real-time Object Detection with Region Proposal Networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.

[5] HE K M,GKIOXARI G,DOLLáR P,et al.Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision(ICCV).Venice:IEEE,2017:2980-2988.

[6] REDMON J,DIVVALA S,GIRSHICK R,et al.You Only Look Once:Unified,Real-time Object Detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas:IEEE,2016:779-788.

[7] LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single Shot Multibox Detector[C]//Computer Vision-ECCV 2016.Amsterdam:Springer,2016:21-37.

[8] LIN T Y,GOYAL P,GIRSHICK R,et al.Focal Loss for Dense Object Detection[C]//2017 IEEE International Conference on Computer Vision (ICCV).Venice:IEEE,2017:2999-3007.

[9] YANG T T,TONG C.Real-time Detection Network for Tiny Traffic Sign Using Multi-scale Attention Module[J].Science China Technological Sciences,2022,65:396-406.

[10] REDMON J,FARHADI A.YOLOv3:An Incremental Improvement[EB/OL].(2018-04-08)[2024-02-16].https://doi.org/10.48550/arXiv.1804.02767.

[11] GU Y,SI B F.A Novel Lightweight Real-time Traffic Sign Detection Integration Framework Based on YOLOv4[J].Entropy,2022,24(4):487.

[12] HOWARD A,SANDLER M,CHEN B,et al.Searching for MobileNetV3[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV).Seoul:IEEE,2019:1314-1324.

[13] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:Optimal Speed and Accuracy of Object Detection[EB/OL].(2020-04-23)[2024-02-16].https://doi.org/10.48550/arXiv.2004.10934.

[14] HOUBEN S,STALLKAMP J,SALMEN J,et al.Detection of Traffic Signs in Real-world Images:The German Traffic Sign Detection Benchmark[C]// The 2013 International Joint Conference on Neural Networks (IJCNN).Dallas:IEEE,2013:1-8.

[15] 乔欢欢,权恒友,邱文利,等.改进YOLOv5s的交通标志识别算法[J].计算机系统应用,2022,31(12):273-279.

[16] ZHU Z,LIANG D,ZHANG S H,et al.Traffic-sign Detection and Classification in the Wild[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas:IEEE,2016:2110-2118.

[17] 韦强,胡晓阳,赵虹鑫.改进YOLOv5的交通标志检测方法[J].计算机工程与应用,2023,59(13):229-237.

[18] DING X H,ZHANG X Y,MA N N,et al.RepVGG:Making VGG-style Convnets Great Again[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Nashville:IEEE,2021:13728-13737.

[19] DING X H,ZHANG X Y,HAN J G,et al.Diverse Branch Block:Building a Convolution as an Inception-like Unit[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Nashville:IEEE,2021:10881-10890.

[20] LIU Y,LI H F,HU C,et al.Learning to Aggregate Multi-scale Context for Instance Segmentation in Remote Sensing Images[EB/OL].(2022-03-27)[2024-02-16].https://doi.org/10.48550/arXiv.2111.11057.

[21] ZHANG Z H,WANG P,REN D W,et al.Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation[J].IEEE Transactions on Cybernetics,2021,52(8):8574-8586.

[22] ZHANG Y F,REN W Q,ZHANG Z,et al.Focal and Efficient IOU Loss for Accurate Bounding Box Regression[J].Neurocomputing,2022,506:146-157.

[23] ZHANG J M,ZOU X,KUANG L D,et al.CCTSDB 2021:A More Comprehensive Traffic Sign Detection Benchmark[J].Human-centric Computing and Information Sciences,2022,12:23.

[24] WANG C Y,BOCHKOVSKIY A,LIAO H Y M.YOLOv7:Trainable Bag-of-freebies Sets New State-of-the-art for Real-time Object Detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Vancouver:IEEE,2023:7464-7475.

基本信息:

DOI:

中图分类号:TP183;TP391.41;U463.6

引用信息:

[1]朱硕,梁吉丰,孙佳豪等.基于改进YOLOv5s的交通标志检测算法[J].无线电工程,2024,54(12):2902-2912.

基金信息:

无锡学院人才启动基金(2021r 014); 江苏省大学生创新创业训练计划项目(202313982037Y)~~

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文